2017年山东省济宁市中考数学试卷
将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是
A. B. C. D.
如图,在 中, , ,将 绕点 逆时针旋转 后得到 ,点 经过的路径为 ,则图中阴影部分的面积是
A. B. C. D.
如图, , 是半径为1的 上两点,且 ,点 从点 出发,在 上以每秒一个单位长度的速度匀速运动,回到点 运动结束,设运动时间为 (单位: ,弦 的长为 ,那么下列图象中可能表示 与 函数关系的是
A.①B.③C.②或④D.①或③
《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的 ,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有 文钱,乙原有 文钱,可列方程组是 .
如图,在平面直角坐标系中,以 为圆心,适当长为半径画弧,交 轴于点 ,交 轴于点 ,再分别以点 , 为圆心,大于 的长为半径画弧,两弧在第二象限内交于点 ,则 与 的数量关系是 .
为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:
请根据以上两图解答下列问题:
(1)该班总人数是 ;
(2)根据计算,请你补全两个统计图;
(3)观察补全后的统计图,写出一条你发现的结论.
某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量 (单位:个)与销售单价 (单位:元)有如下关系: .
设这种双肩包每天的销售利润为 元.
(1)求 与 之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
如图,已知 的直径 ,弦 , 是 的中点,过点 作 ,交 的延长线于点 .
(1)求证: 是 的切线;
(2)求 的长.
实验探究:
(1)如图1,对折矩形纸片 ,使 与 重合,得到折痕 ,把纸片展开;再一次折叠纸片,使点 落在 上,并使折痕经过点 ,得到折痕 ,同时得到线段 , .请你观察图1,猜想 的度数是多少,并证明你的结论.
(2)将图1中的三角形纸片 剪下,如图2.折叠该纸片,探究 与 的数量关系.写出折叠方案,并结合方案证明你的结论.
已知函数 的图象与 轴有两个公共点.
(1)求 的取值范围,并写出当 取值范围内取最大整数时函数的解析式;
(2)题(1)中求得的函数记为 .
①当 时, 的取值范围是 ,求 的值;
②函数 的图象由函数 的图象平移得到,其顶点 落在以原点为圆心,半径为 的圆内或圆上.设函数 的图象顶点为 ,求点 与点 距离最大时函数 的解析式.
定义:点 是 内部或边上的点(顶点除外),在 , , 中,若至少有一个三角形与 相似,则称点 是 的自相似点.
例如:如图1,点 在 的内部, , ,则 ,故点 是 的自相似点.
请你运用所学知识,结合上述材料,解决下列问题:
在平面直角坐标系中,点 是曲线 上的任意一点,点 是 轴正半轴上的任意一点.
(1)如图2,点 是 上一点, ,试说明点 是 的自相似点;当点 的坐标是 , ,点 的坐标是 , 时,求点 的坐标;
(2)如图3,当点 的坐标是 ,点 的坐标是 时,求 的自相似点的坐标;
(3)是否存在点 和点 ,使 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.