2020年内蒙古赤峰市中考数学试卷
2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据"0.0000000099"用科学记数法表示为
A. |
|
B. |
|
C. |
|
D. |
|
下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是
A. |
等边三角形 |
B. |
平行四边形 |
C. |
正八边形 |
D. |
圆及其一条弦 |
学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是
A. |
平均数 |
B. |
中位数 |
C. |
众数 |
D. |
方差 |
如图, 中, , , ,把 沿直线 向右平移3个单位长度得到△ ,则四边形 的面积是
A. |
15 |
B. |
18 |
C. |
20 |
D. |
22 |
如图,在 中,点 , 分别是边 , 的中点,点 是线段 上的一点.连接 , , ,且 , ,则 的长是
A. |
2 |
B. |
3 |
C. |
4 |
D. |
5 |
如图, 经过平面直角坐标系的原点 ,交 轴于点 ,交 轴于点 ,点 为第二象限内圆上一点.则 的正弦值是
A. |
|
B. |
|
C. |
|
D. |
|
如图,点 在反比例函数 的图象上,点 在反比例函数 的图象上,且 轴, ,垂足为点 ,交 轴于点 .则 的面积为
A. |
3 |
B. |
4 |
C. |
5 |
D. |
6 |
如图,在菱形 中, , .动点 从点 出发,以每秒1个单位长度的速度沿折线 运动到点 ,同时动点 从点 出发,以相同速度沿折线 运动到点 ,当一个点停止运动时,另一点也随之停止.设 的面积为 ,运动时间为 秒.则下列图象能大致反映 与 之间函数关系的是
A. | B. | ||
C. | D. |
如图,航拍无人机从 处测得一幢建筑物顶部 的仰角是 ,测得底部 的俯角是 ,此时无人机与该建筑物的水平距离 是9米,那么该建筑物的高度 为 米(结果保留根号).
某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:
某校60名学生体育测试成绩频数分布表
成绩 |
划记 |
频数 |
百分比 |
优秀 |
|
|
|
良好 |
30 |
|
|
合格 |
9 |
|
|
不合格 |
3 |
|
|
合计 |
60 |
60 |
|
如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为 人.
一个电子跳蚤在数轴上做跳跃运动.第一次从原点 起跳,落点为 ,点 表示的数为1;第二次从点 起跳,落点为 的中点 ,第三次从 点起跳,落点为 的中点 ;如此跳跃下去 最后落点为 的中点 ,则点 表示的数为 .
小琪同学和爸爸妈妈一起回老家给奶奶过生日,他们为奶奶准备了一个如图所示的正方形蛋糕,蛋糕的每条边上均匀镶嵌着4颗巧克力.爸爸要求小琪只切两刀把蛋糕平均分成4份,使每个人分得的蛋糕和巧克力数都相等.
(1)请你在图1中画出一种分法(无需尺规作图);
(2)如图2,小琪同学过正方形的中心切了一刀,请你用尺规作图帮她作出第2刀所在的直线.(不写作法,保留作图痕迹)
如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形 的三个顶点处各有一个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圈 起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈 ;若第二次掷得点数为4,就从圈 继续逆时针连续跳4个边长,落到圈 .
(1)丫丫随机掷一次骰子,她跳跃后落回到圈 的概率为 ;
(2)丫丫和甲甲一起玩跳圈游戏:丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈 为胜者.这个游戏规则公平吗?请说明理由.
甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路 ,甲队比乙队少用5天.
(1)求甲,乙两支工程队每天各修路多少米?
(2)我市计划修建长度为 的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?
如图, 是 的直径, 是 的一条弦,点 是 上一点,且 , ,与 的延长线交于点 .
(1)求证: 是 的切线;
(2)若 , ,求直径 的长.
阅读理解:
材料一:若三个非零实数 , , 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 , , 构成"和谐三数组".
材料二:若关于 的一元二次方程 的两根分别为 , ,则有 , .
问题解决:
(1)请你写出三个能构成"和谐三数组"的实数 ;
(2)若 , 是关于 的方程 , , 均不为 的两根, 是关于 的方程 , 均不为 的解.求证: , , 可以构成"和谐三数组";
(3)若 , , 三个点均在反比例函数 的图象上,且三点的纵坐标恰好构成"和谐三数组",求实数 的值.
如图,已知二次函数 的图象与 轴交于 , 两点,与 轴交于点 ,直线 经过 , 两点.
(1)直接写出二次函数的解析式 ;
(2)平移直线 ,当直线 与抛物线有唯一公共点 时,求此时点 的坐标;
(3)过(2)中的点 作 轴,交 轴于点 .若点 是抛物线上一个动点,点 是 轴上一个动点,是否存在以 , , 三点为顶点的直角三角形(其中 为直角顶点)与 相似?如果存在,请直接写出满足条件的点 的个数和其中一个符合条件的点 的坐标;如果不存在,请说明理由.