2020年黑龙江省大庆市中考数学试卷
已知正比例函数 和反比例函数 ,在同一直角坐标系下的图象如图所示,其中符合 的是
A. |
①② |
B. |
①④ |
C. |
②③ |
D. |
③④ |
将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为
A. |
1 |
B. |
2 |
C. |
3 |
D. |
4 |
在一次青年歌手比赛中,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0(单位:分).若去掉一个最高分和一个最低分.则去掉前与去掉后没有改变的一个统计量是
A. |
平均分 |
B. |
方差 |
C. |
中位数 |
D. |
极差 |
已知两个直角三角形的三边长分别为3,4, 和6,8, ,且这两个直角三角形不相似,则 的值为
A. |
或 |
B. |
15 |
C. |
|
D. |
|
如图,在边长为2的正方形 中, , 分别为 与 的中点,一个三角形 沿竖直方向向上平移,在运动的过程中,点 恒在直线 上,当点 运动到线段 的中点时,点 , 恰与 , 两边的中点重合,设点 到 的距离为 ,三角形 与正方形 的公共部分的面积为 .则当 时, 的值为
A. |
或 |
B. |
或 |
C. |
|
D. |
或 |
已知关于的一元二次方程:,有下列结论:
①当时,方程有两个不相等的实根;
②当时,方程不可能有两个异号的实根;
③当时,方程的两个实根不可能都小于1;
④当时,方程的两个实根一个大于3,另一个小于3.
以上4个结论中,正确的个数为 .
如图,,为两个建筑物,两建筑物底部之间的水平地面上有一点,从建筑物的顶点测得点的俯角为,从建筑物的顶点测得点的俯角为,测得建筑物的顶点的俯角为.若已知建筑物的高度为20米,求两建筑物顶点、之间的距离(结果精确到,参考数据:,.
为了了解某校某年级1000名学生一分钟的跳绳次数,从中随机抽取了40名学生的一分钟跳绳次数(次数为整数,且最高次数不超过150次),整理后绘制成如图的频数直方图,图中的,满足关系式.后由于保存不当,部分原始数据模糊不清,但已知缺失数据都大于120.请结合所给条件,回答下列问题.
(1)求问题中的总体和样本容量;
(2)求,的值(请写出必要的计算过程);
(3)如果一分钟跳绳次数在125次以上(不含125次)为跳绳成绩优秀,那么估计该校该年级学生跳绳成绩优秀的人数大约是多少人?(注:该年级共1000名学生)
如图,在矩形中,为对角线的中点,过点作直线分别与矩形的边,交于,两点,连接,.
(1)求证:四边形为平行四边形;
(2)若,,且,求的长.
期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元.已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.
(1)求购买一个甲种、一个乙种笔记本各需多少元?
(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过上一次总费用的,求至多需要购买多少个甲种笔记本?并求购买两种笔记本总费用的最大值.
如图,反比例函数与一次函数的图象在第二象限的交点为,在第四象限的交点为,直线为坐标原点)与函数的图象交于另一点.过点作轴的平行线,过点作轴的平行线,两直线相交于点,的面积为6.
(1)求反比例函数的表达式;
(2)求点,的坐标和的面积.
如图,在中,,以为直径的交于点,连接,过点作,垂足为,、的延长线交于点.
(1)求证:是的切线;
(2)求证:;
(3)若,,求的长.
证明:(1)如图,连接,
是直径,
,
又,
,,
,,
,
,
,
又是半径,
是的切线;
(2),
,
,,
,
,
,
又,
,
,
;
(3),,
,
,
,
,
,
,
,
,,
,
,
,
.