2019年湖北省随州市中考数学试卷
某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:
投中次数 |
3 |
5 |
6 |
7 |
8 |
人数 |
1 |
3 |
2 |
2 |
2 |
则这些队员投中次数的众数、中位数和平均数分别为
A. |
5,6,6 |
B. |
2,6,6 |
C. |
5,5,6 |
D. |
5,6,5 |
第一次"龟兔赛跑",兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是
A. | B. | ||
C. | D. |
如图,在平行四边形 中, 为 的中点, , 交于点 ,若随机向平行四边形 内投一粒米,则米粒落在图中阴影部分的概率为
A. |
|
B. |
|
C. |
|
D. |
|
"分母有理化"是我们常用的一种化简的方法,如: ,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于 ,设 ,易知 ,故 ,由 ,解得 ,即 .根据以上方法,化简 后的结果为
A. |
|
B. |
|
C. |
|
D. |
|
如图所示,已知二次函数 的图象与 轴交于 , 两点,与 轴交于点 , ,对称轴为直线 ,则下列结论:① ;② ;③ ;④ 是关于 的一元二次方程 的一个根.其中正确的有
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为 和 .
如图,在平面直角坐标系中,的直角顶点的坐标为,点在轴正半轴上,且.将先绕点逆时针旋转,再向左平移3个单位,则变换后点的对应点的坐标为 .
如图,矩形的顶点,分别在轴、轴的正半轴上,为的中点,反比例函数的图象经过点,且与交于点,连接,,,若的面积为3,则的值为 .
如图,已知正方形的边长为,为边上一点(不与端点重合),将沿对折至,延长交边于点,连接,.
给出下列判断:
①;
②若,则;
③若为的中点,则的面积为;
④若,则;
⑤.
其中正确的是 .(写出所有正确判断的序号)
“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:
(1)接受问卷调查的学生共有 人,条形统计图中的值为 ;
(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为 ;
(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为 人;
(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.
在一次海上救援中,两艘专业救助船,同时收到某事故渔船的求救讯息,已知此时救助船在的正北方向,事故渔船在救助船的北偏西方向上,在救助船的西南方向上,且事故渔船与救助船相距120海里.
(1)求收到求救讯息时事故渔船与救助船之间的距离;
(2)若救助船,分别以40海里小时、30海里小时的速度同时出发,匀速直线前往事故渔船处搜救,试通过计算判断哪艘船先到达.
如图,在中,,以为直径的分别交,于点,,点在的延长线上,且.
(1)求证:是的切线;
(2)若的直径为3,,求和的长.
某食品厂生产一种半成品食材,成本为2元千克,每天的产量(百千克)与销售价格(元千克)满足函数关系式,从市场反馈的信息发现,该半成品食材每天的市场需求量(百千克)与销售价格(元千克)满足一次函数关系,部分数据如表:
销售价格(元千克) |
2 |
4 |
10 |
|
市场需求量(百千克) |
12 |
10 |
4 |
已知按物价部门规定销售价格不低于2元千克且不高于10元千克.
(1)直接写出与的函数关系式,并注明自变量的取值范围;
(2)当每天的产量小于或等于市场需求量时,这种半成品食材能全部售出,而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.
①当每天的半成品食材能全部售出时,求的取值范围;
②求厂家每天获得的利润(百元)与销售价格的函数关系式;
(3)在(2)的条件下,当为 元千克时,利润有最大值;若要使每天的利润不低于24(百元),并尽可能地减少半成品食材的浪费,则应定为 元千克.
若一个两位数十位、个位上的数字分别为,,我们可将这个两位数记为,易知;同理,一个三位数、四位数等均可以用此记法,如.
【基础训练】
(1)解方程填空:
①若,则 ;
②若,则 ;
③若,则 ;
【能力提升】
(2)交换任意一个两位数的个位数字与十位数字,可得到一个新数,则一定能被 整除,一定能被 整除,一定能被 整除;(请从大于5的整数中选择合适的数填空)
【探索发现】
(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用,再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.
①该“卡普雷卡尔黑洞数”为 ;
②设任选的三位数为(不妨设,试说明其均可产生该黑洞数.