高考原创文科数学预测卷 02(山东卷)
某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为( )
A.70 | B.60 | C.55 | D.40 |
同时具有性质“⑴ 最小正周期是;⑵ 图象关于直线对称;⑶ 在上是减函数”的一个函数可以是( )
A. | B. |
C. | D. |
设是一个各位数字都不是0且没有重复数字的三位数.将组成的3个数字按从小到大排成的三位数记为,按从大到小排成的三位数记为(例如,则,).阅读如图所示的程序框图,运行相应的程序,任意输入一个,输出的结果 .
定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:,,, 依此方法可得:,其中,则 ; .
对定义在区间D上的函数和,如果对任意,都有成立,那么称函数在区间D上可被替代,D称为“替代区间”.给出以下命题:
①在区间上可被替代;
②可被替代的一个“替代区间”为;
③在区间可被替代,则;
④,则存在实数,使得在区间 上被替代;其中真命题的有 .
(本小题满分12分)泉城济南为增强市民的节水意识,面向全市征召宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(Ⅰ)若从第组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第组各抽取多少名志愿者?
(Ⅱ)在(Ⅰ)的条件下,决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
(本小题满分12分)如图所示,已知在四棱锥中, ∥,,,且
(1)求证:平面;
(2)试在线段上找一点,使∥平面, 并说明理由;
(3)若点是由(2)中确定的,且,求四面体的体积.
(本小题满分12分)已知数列是等比数列,首项,公比,其前项和为,且,,成等差数列.
(1)求数列的通项公式;
(2)若数列满足,为数列的前项和,若恒成立,求的最大值.
(本小题满分13分)设函数,,函数的图象与轴的交点在函数的图象上,且在此点处两曲线有相同的切线.
(Ⅰ) 求、的值;
(Ⅱ) 设定义在上的函数的最大值为,最小值为,且,求实数的取值范围.