初中数学

在不透明的甲、乙两个盒子中装有除颜色外完全相同的小球,甲盒中有2个白球、1个黄球,乙盒中有1个白球、1个黄球,分别从每个盒中随机摸出1个球,则摸出的2个球都是黄球的概率是  

来源:2019年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

同时抛掷两枚质地均匀的硬币,一枚硬币正面向上,一枚硬币反面向上的概率是  

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是  

来源:2018年广西河池市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其它都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为     

来源:2017年青海省中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

若从 1 ,1,2这三个数中,任取两个分别作为点 M 的横、纵坐标,则点 M 在第二象限的概率是  

来源:2018年山东省滨州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是  

来源:2017年山东省德州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,随机地闭合开关 S 1 S 2 S 3 S 4 S 5 中的三个,能够使灯泡 L 1 L 2 同时发光的概率是           

来源:2016年山东省聊城市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江 A 地到资阳 B 地有两条路线可走,从资阳 B 地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江 A 地出发经过资阳 B 地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是  

来源:2018年湖南省益阳市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生 A 已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为  

来源:2018年湖南省娄底市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

掷两枚质地均匀的相同硬币,出现两枚都是正面朝上的概率为  

来源:2017年湖南省湘西州中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

掷一枚硬币两次,可能出现的结果有四种,我们可以利用如图所示的树状图来分析所有可能出现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是  

来源:2017年湖南省邵阳市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

在如图所示的电路中,随机闭合开关 S 1 S 2 S 3 中的两个,能让灯泡 L 1 发光的概率是  

来源:2017年湖南省娄底市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

从1、 1 、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是  

来源:2017年湖南省郴州市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是  

来源:2016年四川省自贡市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

1 ,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为  

来源:2017年贵州省铜仁市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

初中数学列表法与树状图法填空题