初中数学

为庆祝中国共产党成立100周年,某中学组织全校学生参加党史知识竞赛,从中任取20名学生的竞赛成绩进行统计,绘制了不完整的统计图表:

组别

成绩范围

频数

A

60 ~ 70

2

B

70 ~ 80

m

C

80 ~ 90

9

D

90 ~ 100

n

(1)分别求 m n 的值;

(2)若把每组中各学生的成绩用这组数据的中间值代替(如 60 ~ 70 的中间值为 65 ) 估计全校学生的平均成绩;

(3)从 A 组和 D 组的学生中随机抽取2名学生,用树状图或列表法求这2名学生都在 D 组的概率.

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

为加强交通安全教育,某中学对全体学生进行“交通知识”测试,学校随机抽取了部分学生的测试成绩,并根据测试成绩绘制两种统计图表(不完整),请结合图中信息解答下列问题:

学生测试成绩频数分布表

组别

成绩 x

人数

A

60 x < 70

8

B

70 x < 80

m

C

80 x < 90

24

D

90 x 100

n

(1)表中的 m 值为    n 值为   

(2)求扇形统计图中 C 部分所在扇形的圆心角度数;

(3)若测试成绩80分以上(含80分)为优秀,根据调查结果请估计全校2000名学生中测试成绩为优秀的人数.

来源:2021年辽宁省营口市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

为庆祝中国共产党建党100周年,某校开展了"党在我心中"党史知识竞赛,竞赛得分为整数,王老师为了解竞赛情况,随机抽取了部分参赛学生的得分并进行整理,绘制成不完整的统计图表.

组别

成绩 x (分 )

频数

A

75 . 5 x < 80 . 5

6

B

80 . 5 x < 85 . 5

14

C

85 . 5 x < 90 . 5

m

D

90 . 5 x < 95 . 5

n

E

95 . 5 x < 100 . 5

p

请你根据统计图表提供的信息解答下列问题:

(1)上表中的 m =    n =    p =   

(2)这次抽样调查的成绩的中位数落在哪个组?请补全频数分布直方图.

(3)已知该校有1000名学生参赛,请估计竞赛成绩在90分以上的学生有多少人?

(4)现要从 E 组随机抽取两名学生参加上级部门组织的党史知识竞赛, E 组中的小丽和小洁是一对好朋友,请用列表或画树状图的方法求出恰好抽到小丽和小洁的概率.

来源:2021年贵州省黔东南州中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

某校开展主题为"防疫常识知多少"的调查活动,抽取了部分学生进行调查,调查问卷设置了 A :非常了解、 B :比较了解、 C :基本了解、 D :不太了解四个等级,要求每个学生填且只能填其中的一个等级,采取随机抽样的方式,并根据调查结果绘制成如图所示不完整的频数分布表和频数分布直方图,根据以上信息回答下列问题:

等级

频数

频率

A

20

0.4

B

15

b

C

10

0.2

D

a

0.1

(1)频数分布表中 a =   , b =   ,将频数分布直方图补充完整;

(2)若该校有学生1000人,请根据抽样调查结果估算该校"非常了解"和"比较了解"防疫常识的学生共有多少人?

(3)在"非常了解"防疫常识的学生中,某班有5个学生,其中3男2女,计划在这5个学生中随机抽选两个加入防疫志愿者团队,请用列表或画树状图的方法求所选两个学生中至少有一个女生的概率.

image.png

来源:2021年贵州省铜仁市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

为了解某校某年级学生一分钟跳绳情况,对该年级全部360名学生进行一分钟跳绳次数的测试,并把测得数据分成四组,绘制成如图所示的频数表和未完成的频数分布直方图(每一组不含前一个边界值,含后一个边界值).

某校某年级360名学生一分钟跳绳次数的频数表

组别(次     )

频数

100 ~ 130

48

130 ~ 160

96

160 ~ 190

a

190 ~ 220

72

(1)求 a 的值;

(2)把频数分布直方图补充完整;

(3)求该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比.

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

某校为了了解本校学生每天课后进行体育锻炼的时间情况,在5月份某天随机抽取了若干名学生进行调查,调查发现学生每天课后进行体育锻炼的时间都不超过100分钟,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,解答下列问题:

组别

锻炼时间(分 )

频数(人)

百分比

A

0 x 20

12

20 %

B

20 < x 40

a

35 %

C

40 < x 60

18

b

D

60 < x 80

6

10 %

E

80 < x 100

3

5 %

(1)本次调查的样本容量是   ;表中 a =    b =   

(2)将频数分布直方图补充完整;

(3)已知 E 组有2名男生和1名女生,从中随机抽取两名学生,恰好抽到1名男生和1名女生的概率是   

(4)若该校学生共有2200人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生共有多少人?

来源:2021年广西贵港市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

为庆祝中国共产党建党100周年,某校开展了以"学习百年党史,汇聚团结伟力"为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成 A B C D E 五个等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:

等级

成绩     x

A

50 x < 60

B

60 x < 70

C

70 x < 80

D

80 x < 90

E

90 x 100

(1)本次调查一共随机抽取了   名学生的成绩,频数分布直方图中 m =   

(2)补全学生成绩频数分布直方图;

(3)所抽取学生成绩的中位数落在   等级;

(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?

来源:2021年甘肃省武威市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

我市于2021年5月 22 - 23 日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加.现对某校初中1000名学生就“比赛规则”的了解程度进行了抽样调查(参与调查的同学只能选择其中一项),并将调查结果绘制出两幅不完整的统计图表,请根据统计图表回答下列问题:

类别

频数

频率

不了解

10

m

了解很少

16

0.32

基本了解

b

很了解

4

n

合计

a

1

(1)根据以上信息可知: a =    b =    m =    n =   

(2)补全条形统计图;

(3)估计该校1000名初中学生中“基本了解”的人数约有  人;

(4)“很了解”的4名学生是三男一女,现从这4人中随机抽取两人去参加全市举办的“龙舟赛”知识竞赛,请用画树状图或列表的方法说明,抽到两名学生均为男生和抽到一男一女的概率是否相同.

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

为培养学生正确的劳动价值观和良好劳动品质,加强新时代中学生劳动教育,某校八年级(1)班对本班35名学生进行了劳动能力量化评估和近一周家务劳动总时间调查,并对相关数据进行了收集、整理和分析,研究过程中的部分数据如下:

信息一:劳动能力量化评估的成绩采用十分制,得分均为整数;

信息二:

信息三:

近一周家务劳动时间分布表

时间/小时

t 1

1 t 2

2 t 3

3 t 4

t 4

人数/人

5

8

12

7

3

信息四:

劳动能力量化成绩与近一周家务劳动总时间统计表

成绩/分

人数

时间/小时

6

7

8

9

10

t 1

4

1

0

0

0

1 t 2

0

6

1

1

0

2 t 3

0

0

9

3

0

3 t 4

0

1

1

3

2

t 4

0

0

0

1

2

根据以上信息,解决下列问题:

(1)直接从信息二的统计图中“读”出八年级(1)班劳动能力量化成绩的平均分为  分;

(2)请你判断下列说法合理吗?(请在横线上填写“合理”或“不合理”)

①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:  

②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:  

③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在 2 t 3 的时间段:  

(3)结合以上信息,你认为普遍情况下参加家务劳动的时间与劳动能力之间具有怎样的关系?

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位: m ) 绘制成不完整的频数分布表和频数分布直方图.

学生立定跳远测试成绩的频数分布表

分组

频数

1 . 2 x < 1 . 6

a

1 . 6 x < 2 . 0

12

2 . 0 x < 2 . 4

b

2 . 4 x < 2 . 8

10

请根据图表中所提供的信息,完成下列问题:

(1)表中 a =    b =   

(2)样本成绩的中位数落在  范围内;

(3)请把频数分布直方图补充完整;

(4)该校共有1200名学生,估计该学校学生立定跳远成绩在 2 . 4 x < 2 . 8 范围内的有多少人?

来源:2020年山东省枣庄市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

2020年是脱贫攻坚年.为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场.经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:

质量     / kg

组中值

频数(只     )

0 . 9 x < 1 . 1

1.0

6

1 . 1 x < 1 . 3

1.2

9

1 . 3 x < 1 . 5

1.4

a

1 . 5 x < 1 . 7

1.6

15

1 . 7 x < 1 . 9

1.8

8

根据以上信息,解答下列问题:

(1)表中 a =    ,补全频数分布直方图;

(2)这批鸡中质量不小于 1 . 7 kg 的大约有多少只?

(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元 / kg 的价格售出这批鸡后,该村贫困户能否脱贫?

来源:2020年山东省临沂市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.

作业情况

频数

频率

非常好

   

0.22

较好

68

  

一般

  

  

不好

40

  

请根据图表中提供的信息,解答下列问题:

(1)本次抽样共调查了多少名学生?

(2)将统计表中所缺的数据填在表中横线上;

(3)若该中学有1800名学生,估计该校学生作业情况"非常好"和"较好"的学生一共约多少名?

(4)某学习小组4名学生的作业本中,有2本"非常好"(记为 A 1 A 2 ) ,1本"较好"(记为 B ) ,1本"一般"(记为 C ) ,这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用"列表法"或"画树状图"的方法求出两次抽到的作业本都是"非常好"的概率.

来源:2020年山东省东营市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

杨梅果实成熟期正值梅雨季节,雨水过量会导致杨梅树大量落果,给果农造成损失.为此,市农科所开展了用防雨布保护杨梅果实的实验研究.在某杨梅果园随机选择40棵杨梅树,其中20棵加装防雨布(甲组),另外20棵不加装防雨布(乙组).在杨梅成熟期,统计了甲、乙两组中每一棵杨梅树的落果率(落地的杨梅颗数占树上原有杨梅颗数的百分比),绘制成统计图表(数据分组包含左端值不包含右端值).

甲组杨梅树落果率频数分布表

落果率

组中值

频数(棵     )

0 x < 10 %

5 %

12

10 % x < 20 %

15 %

4

20 % x < 30 %

25 %

2

30 % x < 40 %

35 %

1

40 % x < 50 %

45 %

1

(1)甲、乙两组分别有几棵杨梅树的落果率低于 20 %

(2)请用落果率的中位数或平均数,评价市农科所"用防雨布保护杨梅果实"的实际效果;

(3)若该果园的杨梅树全部加装这种防雨布,落果率可降低多少?说出你的推断依据.

来源:2021年浙江省台州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

垃圾的分类回收不仅能够减少环境污染、美化家园,甚至能够变废为宝、节约资源.为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分).该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.

(1)以下三种抽样调查方案:

方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;

方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;

方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本.

其中抽取的样本最具有代表性和广泛性的一种抽样调查方案是   (填写“方案一”、“方案二”或“方案三” )

(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表 ( 90 分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为 x 分)

样本容量

平均分

及格率

优秀率

最高分

最低分

100

83.59

95 %

40 %

100

52

分数段

50 x < 60

60 x < 70

70 x < 80

80 x < 90

90 x 100

频数

5

7

18

30

40

结合上述信息解答下列问题:

①样本数据的中位数所在分数段为   

②全校1565名学生,估计竞赛分数达到“优秀”的学生有   人.

来源:2021年云南省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止2021年5月18日 16 : 20 ,全球接种“新冠”疫苗的比例为 18 . 29 % ;中国累计接种4.2亿剂,占全国人口的 29 . 32 % .以下是某地甲、乙两家医院5月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:

甲医院

乙医院

年龄段

频数

频率

频数

频率

18 - 29 周岁

900

0.15

400

0.1

30 - 39 周岁

a

0.25

1000

0.25

40 - 49 周岁

2100

b

c

0.225

50 - 59 周岁

1200

0.2

1200

0.3

60周岁以上

300

0.05

500

0.125

(1)根据上面图表信息,回答下列问题:

①填空: a =    b =    c =   

②在甲、乙两医院当天接种疫苗的所有人员中, 40 - 49 周岁年龄段人数在扇形统计图中所占圆心角为   

(2)若 A B C 三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

初中数学频数(率)分布表试题