初中数学

如图,在平面直角坐标系中,四边形OABC是边长为4的正方形,M(4,m)、N(n,4)分别是AB、BC上的两个动点,且ON⊥MN,当OM最小时,    

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,双曲线经过Rt△BOC斜边上的点A,且满足,与BC交于点D,S△BOD=21,求k= _________

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC,GE∥DC、设图中三个平行四边形的面积依次是,若,则=      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在边长为6的正方形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N,若点M运动所经过的路程为x(6≤x≤12),那么当△ADN为等腰三角形时,x的值为___________。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;
②PM+PN=AC;
③PE2+PF2=PO2
④△POF∽△BNF;
⑤当△PMN∽△AMP时,点P是AB的中点.
其中正确的结论是           

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在△ABC中,AB=6cm,AC=5cm,点D、E分别在AB、AC上.若△ADE与△ABC相似,且S△ADE:S四边形BCED=1:8,则AD=     cm.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,平行四边形ABCD中,AB=5,AD=7,AB⊥AC,点E在边AD上,满足=,点F在AB上,满足 =,连结BE和CF相交于点G,则线段CG的长度是    

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是        

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,△ABC是一张直角三角形彩色纸,AC=15cm,BC=20cm.若将斜边上的高CD 分成n等分,然后裁出(n﹣1)张宽度相等的长方形纸条.则这(n﹣1)张纸条的面积和是   cm2

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

将一副三角尺如图所示叠放在一起,则              

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使得两个直角的顶点重合于对角线BD上一点P,EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:

①当x=1时,点P是正方形ABCD的中心;
②当x=时,EF+GH>AC;
③当0<x<2时,六边形AEFCHG面积的最大值是
④当0<x<2时,六边形AEFCHG周长的值不变.
其中正确的是________(填序号).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=           

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

AD为△ABC的中线,G为△ABC的重心,若=2,则=     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,E,F分别是AC,BC边上的点,P1,P2,P3,…,Pn1是AB边的n等分点,CE = AC,CF = BC,∠B = 40°,AB = BC,则∠EP1F +∠EP2F +∠EP3F + … +∠EP n1F = ________.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H,若,则∠ABC所对的弧长等于       (长度单位).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质填空题