我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?
(1)阅读与说理:
对于这两个三角形均为直角三角形,显然它们全等.
对于这两个三角形均为钝角三角形,可证它们全等(证明略).
对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:如图所示,△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1Cl,∠C=∠Cl.试说明△ABC≌△A1B1C1的理由.
(请你将下列说理过程补充完整).
理由:分别过点B,B1作BD⊥CA于D,B1 D1⊥C1 A1于D1.则∠BDC=∠B1D1C1=90°,
因为BC=B1C1,∠C=∠C1,△BCD≌△B1C1D1,BD=B1D1.
(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.
在中,,,直线经过点,且于,于.
(1)当直线绕点旋转到图1的位置时,求证:
①≌;
②;
(2)当直线绕点旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.
如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
下列四种说法:
①若一个三角形三个内角的度数比为2∶3∶4,则这个三角形是锐角三角形;
②“掷两枚质地均匀的正方体骰子点数之和一定大于6”是必然事件;
③购买一张彩票可能中奖;
④已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为100°其中正确的序号是.
一个多边形的内角和与它的一个外角和为570°,则这个多边形的边数为( )
A.5 | B.6 | C.7 | D.8 |
下列正多边形的组合中,能够铺满地面的是( )
A.正六边形和正方形 | B.正五边形和正八边形 |
C.正六边形和正三角形 | D.正十边形和正三角形 |
(11·佛山)如图物体从点A出发,按照A→B(第1步)→C(第2)→D→A
→E→F→G→A→B→……的顺序循环运动,则第2011步到达点
处;
(11·佛山)下列说法正确的是( )
A.“作线段CD=AB”是一个命题; |
B.三角形的三条内角平分线的交点为三角形的内心; |
C.命题“若x=1,则x2=1”的逆命题是真命题; |
D.“具有相同字母的项称为同类项”是“同类项”的定义; |
如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是( ▲ )
A.30o | B.25o |
C.20o | D.15o |
如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.
如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )
A. | B. | ||
C. | D. |
如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
A.30° | B.25° |
C.20° | D.15° |
将一块直角三角形纸片ABC折叠,使点A与点C重合,展开后平铺在桌面上(如
图所示).若∠C=90°,BC=8cm,则折痕DE的长度是 cm.
已知一个几何体的三种视图如右图所示,则这个几何体是
A.圆柱 |
B.圆锥 |
C.球体 |
D.正方体 |