如图,正方形 ABCD 的边长为1,点 P 在射线 BC 上(异于点 B 、 C ) ,直线 AP 与对角线 BD 及射线 DC 分别交于点 F 、 Q
(1)若 BP = 3 3 ,求 ∠ BAP 的度数;
(2)若点 P 在线段 BC 上,过点 F 作 FG ⊥ CD ,垂足为 G ,当 ΔFGC ≅ ΔQCP 时,求 PC 的长;
(3)以 PQ 为直径作 ⊙ M .
①判断 FC 和 ⊙ M 的位置关系,并说明理由;
②当直线 BD 与 ⊙ M 相切时,直接写出 PC 的长.