如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处.已知AB=8,BC=10,则tan∠EFC的值为 ( )
A. | B. | C. | D. |
已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:
(1)当t为何值时,四边形APFD是平行四边形?
(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.
对于边长为3的正方形ABCD,建立适当的直角坐标系,写出各个顶点的坐标.
如图,四边形ABCD、DEFG都是正方形,连接AE、CG、AE与CG相交于点M,CG与AD相交于点N.
求证:(1);
(2)
如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.
(1)ΔABE与ΔADF相似吗?请说明理由.
(2)若AB=6,AD=12,BE=8,求FD的长.
如果一个正多边形的内角和是1440°,则这个正多边形是正边形。
如图,在矩形ABCD中,对角线与相交于点O,且AB=OA=2cm ,则BD的长为________cm,BC的长为_______cm.
以下说法错误的是
A. |
多边形的内角大于任何一个外角 |
B. |
任意多边形的外角和是 |
C. |
正六边形是中心对称图形 |
D. |
圆内接四边形的对角互补 |
下列命题中,正确的是( )
A.四边相等的四边形是正方形 |
B.四角相等的四边形是正方形 |
C.对角线相等的菱形是正方形 |
D.对角线垂直且相等的四边形是正方形 |
一个多边形的内角和是900°,则这个多边形的边数为( )
A.6 | B.7 | C.8 | D.9 |
如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,tan∠AEB=3,则GF的长为 .