初中数学

如图,在矩形纸片 ABCD 中,点 E F 分别在矩形的边 AB AD 上,将矩形纸片沿 CE CF 折叠,点 B 落在 H 处,点 D 落在 G 处,点 C H G 恰好在同一直线上,若 AB = 6 AD = 4 BE = 2 ,则 DF 的长是 (    )

A.

2

B.

7 4

C.

3 2 2

D.

3

来源:2021年四川省宜宾市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中,点 O 是角平分线 AD BE 的交点,若 AB = AC = 10 BC = 12 ,则 tan OBD 的值是 (    )

A. 1 2 B.2C. 6 3 D. 6 4

来源:2021年四川省宜宾市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

若直角三角形的两边长分别是方程 x 2 - 7 x + 12 = 0 的两根,则该直角三角形的面积是 (    )

A.

6

B.

12

C.

12或 3 7 2

D.

6或 3 7 2

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 5 AD = 3 ,点 E BC 上一点,把 ΔCDE 沿 DE 翻折,点 C 恰好落在 AB 边上的 F 处,则 CE 的长是 (    )

A.

1

B.

4 3

C.

3 2

D.

5 3

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, A = 60 ° ,点 E F 分别在边 AB BC 上, AE = BF = 2 ΔDEF 的周长为 3 6 ,则 AD 的长为 (    )

A.

6

B.

2 3

C.

3 + 1

D.

2 3 - 1

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,点 O ABCD 对角线的交点, EF 过点 O 分别交 AD BC 于点 E F ,下列结论成立的是 (    )

A.

OE = OF

B.

AE = BF

C.

DOC = OCD

D.

CFE = DEF

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, O 的直径 AB = 8 AM BN 是它的两条切线, DE O 相切于点 E ,并与 AM BN 分别相交于 D C 两点, BD OC 相交于点 F ,若 CD = 10 ,则 BF 的长是 (    )

A.

8 17 9

B.

10 17 9

C.

8 15 9

D.

10 15 9

来源:2021年四川省泸州市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, ACB = 90 ° AC = 8 BC = 6 ,将 ΔADE 沿 DE 翻折,使点 A 与点 B 重合,则 CE 的长为 (    )

A.

19 8

B.

2

C.

25 4

D.

7 4

来源:2021年四川省凉山州中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,已知点 P 是菱形 ABCD 的对角线 AC 延长线上一点,过点 P 分别作 AD DC 延长线的垂线,垂足分别为点 E F .若 ABC = 120 ° AB = 2 ,则 PE - PF 的值为 (    )

A.

3 2

B.

3

C.

2

D.

5 2

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,点 E F 分别在 BC DC 边上,添加以下条件不能判定 ΔABE ΔADF 的是 (    )

A.

BE = DF

B.

BAE = DAF

C.

AE = AD

D.

AEB = AFD

来源:2021年四川省成都市中考数学试卷
  • 更新:2021-08-12
  • 题型:未知
  • 难度:未知

如图, AB BC CD DE 是四根长度均为 5 cm 的火柴棒,点 A C E 共线.若 AC = 6 cm CD BC ,则线段 CE 的长度是 (    )

A.

6 cm

B.

7 cm

C.

6 2 cm

D.

8 cm

来源:2021年陕西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为"无字证明".实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是 (    )

A.

统计思想

B.

分类思想

C.

数形结合思想

D.

函数思想

来源:2021年山西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,三角形纸片 ABC AB = AC BAC = 90 ° ,点 E AB 中点,沿过点 E 的直线折叠,使点 B 与点 A 重合,折痕交 BC 于点 F .已知 EF = 3 2 ,则 BC 的长是 (    )

A.

3 2 2

B.

3

C.

3 2

D.

3 3

来源:2021年山东省枣庄市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC ΔADE 中, CAB = DAE = 36 ° AB = AC AD = AE .连接 CD ,连接 BE 并延长交 AC AD 于点 F G .若 BE 恰好平分 ABC ,则下列结论错误的是 (    )

A.

ADC = AEB

B.

CD / / AB

C.

DE = GE

D.

B F 2 = CF AC

来源:2021年山东省威海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, E BD 的中点,则下列四个结论:

AM = CN

②若 MD = AM A = 90 ° ,则 BM = CM

③若 MD = 2 AM ,则 S ΔMNC = S ΔBNE

④若 AB = MN ,则 ΔMFN ΔDFC 全等.

其中正确结论的个数为 (    )

A.

1个

B.

2个

C.

3个

D.

4个

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

初中数学三角形选择题