如图,在平面直角坐标系 xOy 中,抛物线 y = a ( x − h ) 2 + k 与 x 轴相交于 O , A 两点,顶点 P 的坐标为 ( 2 , − 1 ) .点 B 为抛物线上一动点,连接 AP , AB ,过点 B 的直线与抛物线交于另一点 C .
(1)求抛物线的函数表达式;
(2)若点 B 的横坐标与纵坐标相等, ∠ ABC = ∠ OAP ,且点 C 位于 x 轴上方,求点 C 的坐标;
(3)若点 B 的横坐标为 t , ∠ ABC = 90 ° ,请用含 t 的代数式表示点 C 的横坐标,并求出当 t < 0 时,点 C 的横坐标的取值范围.