平面直角坐标系 xOy 中,横坐标为 a 的点 A 在反比例函数 y 1 = = k x ( x > 0 ) 的图象上,点 A ' 与点 A 关于点 O 对称,一次函数 y 2 = mx + n 的图象经过点 A ' .
(1)设 a = 2 ,点 B ( 4 , 2 ) 在函数 y 1 、 y 2 的图象上.
①分别求函数 y 1 、 y 2 的表达式;
②直接写出使 y 1 > y 2 > 0 成立的 x 的范围;
(2)如图①,设函数 y 1 、 y 2 的图象相交于点 B ,点 B 的横坐标为 3 a ,△ A A ' B 的面积为16,求 k 的值;
(3)设 m = 1 2 ,如图②,过点 A 作 AD ⊥ x 轴,与函数 y 2 的图象相交于点 D ,以 AD 为一边向右侧作正方形 ADEF ,试说明函数 y 2 的图象与线段 EF 的交点 P 一定在函数 y 1 的图象上.