平面直角坐标系 xOy 中,横坐标为 a 的点 A 在反比例函数 y 1 = = k x ( x > 0 ) 的图象上,点 A ' 与点 A 关于点 O 对称,一次函数 y 2 = mx + n 的图象经过点 A ' .
(1)设 a = 2 ,点 B ( 4 , 2 ) 在函数 y 1 、 y 2 的图象上.
①分别求函数 y 1 、 y 2 的表达式;
②直接写出使 y 1 > y 2 > 0 成立的 x 的范围;
(2)如图①,设函数 y 1 、 y 2 的图象相交于点 B ,点 B 的横坐标为 3 a ,△ A A ' B 的面积为16,求 k 的值;
(3)设 m = 1 2 ,如图②,过点 A 作 AD ⊥ x 轴,与函数 y 2 的图象相交于点 D ,以 AD 为一边向右侧作正方形 ADEF ,试说明函数 y 2 的图象与线段 EF 的交点 P 一定在函数 y 1 的图象上.
如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E. (1)判断直线DE与⊙O的位置关系,并说明理由; (2)若AE=8,⊙O的半径为5,求DE的长.
如图,直线y=kx+b与反比例函数只有一个交点A(1 , 2),且与x轴、y轴分别交于B,C两点,AD垂直平分OB,垂足为D, (1)求点B的坐标和m的值; (2)求直线解析式
已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1∶2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°. 求:(1)坡顶A到地面PQ的距离; (2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的倍,问乘公交车平均速度?
已知:如图,□ABCD中,∠ABC的平分线交AD于E, ∠CDA的平分线交BC于F. (1)求证:△ABE≌△CDF;(2)连接EF、BD,求证:EF与BD互相平分.