(18分)如图所示,在坐标系xOy内有一半径为a的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场。在直线y=a的上方和直线x=2a的左侧区域内,有一沿y轴负方向的匀强电场,场强大小为E。一质量为m、电荷量为+q(q>0)的粒子以速度v从O点垂直于磁场方向射入,当速度方向沿x轴正方向时,粒子恰好从O1点正上方的A点射出磁场,不计粒子重力。
(1)求磁感应强度B的大小;
(2)粒子在第一象限内运动到最高点时的位置坐标;
(3)若粒子以速度v从O点垂直于磁场方向射入第一象限,当速度方向沿x轴正方向的夹角=30°时,求粒子从射入磁场到最终离开磁场的时间t。
如图,直线MN 上方有平行于纸面且与MN成45。的有界匀强电场,电场强度大小未知;MN下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B。今从MN_上的O点向磁场中射入一个速度大小为v、方向与MN成45角的带正电粒子,该粒子在磁场中运动时的轨道半径为R。若该粒子从O点出发记为第一次经过直线MN,而第五次经过直线MN时恰好又通过O点。不计粒子的重力。求:
(1)电场强度的大小;
(2)该粒子从O点出发,第五次经过直线MN时又通过O点的时间;
(3)该粒子再次从O点进入磁场后,运动轨道的半径。
如图所示,带电平行金属板相距为2R,在两板间半径为R的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度为B,两板及其左侧边缘连线均与磁场边界刚好相切。一带电粒子(不计重力)沿两板间中心线O1O2从左侧O1点以某一速度射入,沿直线通过圆形磁场区域,然后恰好从极板边缘飞出,在极板间运动时间为t0。若仅撤去磁场,质子仍从O1点以相同速度射入,经时间打到极板上。求:
(1)两极板间电压U;
(2)若两极板不带电,保持磁场不变,带电粒子仍沿中心线O1O2从O1点射入,欲使带电粒子从左侧飞出两板间,入射速度v应满足什么条件。
如图所示,y轴上A点距坐标原点的距离为L,坐标平面内有边界过A点和坐标原点O的圆形匀强磁场区域,磁场方向垂直坐标平面向里。有一电子(质量为m、电荷量为e)从A点以初速度v0沿着x轴正方向射入磁场区域,并从x轴上的B点射出磁场区域,此时速度方向与x轴正方向之间的夹角为60°。求:
(1)磁场的磁感应强度大小;(2)电子在磁场中运动的时间。
如图所示,虚线OC与y轴的夹角θ=60°,在此角范围内有一方向垂直于xOy平面向外、磁感应强度大小为B的匀强磁场。一质量为m、电荷量为q的带正电的粒子a(不计重力)从y轴的点M(0,L)沿x 轴的正方向射入磁场中。求:
(1)要使粒子a离开磁场后垂直经过x轴,该粒子的初速度v1为多大;
(2)若大量粒子a同时以v2=从M点沿xOy平面的各个方向射入磁场中,则从OC边界最先射出的粒子与最后射出的粒子的时间差。
在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B.一质量为m带有电量为q的粒子以一定的速度,沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计粒子重力影响).
(1)如果粒子恰好从A点射出磁场,求入射粒子的速度v1.
(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图所示).求入射粒子的速度v2.
(12分)提纯氘核技术对于核能利用具有重大价值.下图是从质子、氘核混合物中将质子和氘核分离的原理图,x轴上方有垂直于纸面向外的匀强磁场,初速度为0的质子、氘核混合物经电压为U的电场加速后,从x轴上的A()点沿与的方向进入第二象限(速度方向与磁场方向垂直),质子刚好从坐标原点离开磁场.已知质子、氘核的电荷量均为,质量分别为m、2m,忽略质子、氘核的重力及其相互作用.
(1)求质子进入磁场时速度的大小;
(2)求质子与氘核在磁场中运动的时间之比;
(3)若在x轴上接收氘核,求接收器所在位置的横坐标.
在如图所示,x轴上方有一匀强磁场,磁感应强度的方向垂直于纸面向里,大小为B,x轴下方有一匀强电场,电场强度的大小为E,方向与y轴的夹角θ为45o且斜向上方。现有一质量为m电量为q的正离子,以速度v0由y轴上的A点沿y轴正方向射入磁场,该离子在磁场中运动一段时间后从x轴上的C点进入电场区域,该离子经C点时的速度方向与x轴夹角为45o。 不计离子的重力,设磁场区域和电场区域足够大。求:
|
(1)C点的坐标;
(2)离子从A点出发到第三次穿越x轴时的运动时间;如图所示,一个质量为,电荷量的带电微粒(重力忽略不计),从静止开始经U1=100 V电压加速后,水平进入两平行金属板间的偏转电场,偏转电场的电压U2=100 V.金属板长L=20cm,两板间距。求:
(1)微粒进入偏转电场时的速度大小;
(2)微粒射出偏转电场时的偏转角θ;
(3)若该匀强磁场的宽度为D=10 cm,为使微粒不会由磁场右边射出,该匀强磁场的磁感应强度B至少多大?
如图在轴上方存在垂直纸面向里的磁感应强度为B的匀强磁场,轴下方存在垂直纸面向外的磁感应强度为的匀强磁场。一带负电的粒子从原点O以与轴成30°角的方向斜向上射入磁场,且在轴上方运动半径为。求:
(1)粒子在轴下方磁场中运动的半径。
(2)粒子在轴下方磁场中运动的时间与在轴上方磁场中运动的时间之比。
如图所示,两块水平放置、相距为d的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m、水平速度均为v0、带相等电荷量的墨滴.调节电源电压至U,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最后垂直打在下板的M点.
(1)判断墨滴所带电荷的种类,并求其电荷量;
(2)求磁感应强度B的值;
(3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M点,应将磁感应强度调至B′,则B′的大小为多少?
如图所示,有一对平行金属板,两板相距为0.05m,电压为10V。两板之间有匀强磁场,磁感应强度大小为B0=0.1T,方向与金属板面平行并垂直于纸面向里。图中右边有一半径R为0.1m、圆心为O的圆形区域内也存在匀强磁场,磁感应强度大小为,方向垂直于纸面向里。一正离子沿平行于金属板面,从A点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD方向射入圆形磁场区域,最后从圆形区域边界上的F点射出。已知速度的偏向角,不计离子重力。求:
(1)离子速度v的大小; (2)离子的比荷q/m; (3)离子在圆形磁场区域中运动时间t。
(12分)在如图所示的直角坐标系xoy中,矩形区域oabc内有垂直于纸面向外的匀强磁场,磁感应强度大小为B=5.0×10-2T;第一象限内有沿-y方向的匀强电场,电场强度大小为E=1.0×105N/C.已知矩形区域oa边长为0.60m,ab边长为0.20 m.在bc边中点N处有一放射源,某时刻,放射源沿纸面向磁场中各方向均匀地辐射出速率均为m/s的某种带正电粒子,带电粒子质量m=1.6×10-27kg,电荷量为q=+3.2×10-19kg,不计粒子重力,求:(计算结果保留两位有效数字)
(1)粒子在磁场中运动的半径;
(2)从x轴上射出的粒子中,在磁场中运动的最短路程为多少?
(3)放射源沿-x方向射出的粒子,从射出到从y轴离开所用的时间.
如图所示装置中,区域Ⅰ中有竖直向上的匀强电场,电场强度为E,区域Ⅱ内有垂直纸面向外的水平匀强磁场,磁感应强度为B。区域Ⅲ中有垂直纸面向里的水平匀强磁场,磁感应强度为2B。一质量为m、带电量为q的带负电粒子(不计重力)从左边界O点正上方的M点以速度v0水平射入电场,经水平分界线OP上的A点与OP成60°角射入Ⅱ区域的磁场,并垂直竖直边界CD进入Ⅲ区域的匀强磁场中。求:
(1)粒子在Ⅱ区域匀强磁场中运动的轨道半径
(2)O、M间的距离
(3)粒子从M点出发到第二次通过CD边界所经历的时间