高中物理

分如图所示,某放射源A中均匀地向外辐射出平行于y轴的、速度一定的a粒子(质量为m,电荷量为+q)。为测定其飞出的速度大小,现让其先经过一个磁感应强度为B、区域为半圆形的匀强磁场,经该磁场偏转后,它恰好能够沿x轴进入右侧的平行板电容器,并打到置于N板上的荧光屏上。调节滑动触头,当触头P位于滑动变阻器的中央位置时,通过显微镜头Q看到屏上的亮点恰好能消失.已知电源电动势为E,内阻为r0,滑动变阻器的总阻值R0="2" r0,问:

(1)a粒子的速度大小v0=?
(2)满足题意的a粒子,在磁场中运动的总时间t=?
(3)该半圆形磁场区域的半径R=?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,平面直角坐标系第一象限存在竖直向上的匀强电场,距离原点O为3a处有一个竖直放置的荧光屏,荧光屏与x轴相交于Q点,且纵贯第四象限。一个顶角等于30°的直角三角形区域内存在垂直平面向里的匀强磁场,三角形区域的一条直角边ML与y轴重合,且MN被x轴垂直平分。已知ML的长度为6a,磁感应强度为B,电子束以相同的速度v0从LO区间垂直y轴和磁场方向射入直角三角形区域。从y=-2a射入磁场的电子运动轨迹恰好经过原点O,假设第一象限的电场强度大小为E=Bv0,试求:

(1)电子的比荷;
(2)电子束从+y轴上射入电场的纵坐标范围;
(3)从磁场中垂直于y轴射入电场的电子打到荧光屏上距Q点的最远距离。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图(甲)所示,两平行金属板间接有如图(乙)所示的随时间t变化的电压u,两板间电场可看作是均匀的,且两板外无电场,极板长L=0.2m,板间距离d=0.2m,在金属板右侧有一边界为MN的区域足够大的匀强磁场,MN与两板中线OO′垂直,磁感应强度B=5×10-3T,方向垂直纸面向里。现有带正电的粒子流沿两板中线OO′连续射入电场中,已知每个粒子的速度v0=105m/s,比荷q/m=108C/kg,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的。

(1)试求带电粒子能够射出电场时的最大电压和对应的射出速度大小。
(2)证明任意时刻从电场射出的带电粒子,进入磁场时在MN上的入射点和出磁场时在MN上的出射点间的距离为定值。
(3)从电场射出的带电粒子,进入磁场运动一段时间后又射出磁场。求粒子在磁场中运动的最长时间和最短时间。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(12 分)在平面直角坐标系xoy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以一定的初速度垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,已知ON=d,如图所示.不计粒子重力,求:

(1)粒子在磁场中运动的轨道半径R;
(2)粒子在M点的初速度的大小;
(3)粒子从M点运动到P点的总时间t.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一圆筒的横截面如图所示,其圆心为O。筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷。质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中,粒子与圈筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:

(1)M、N间电场强度E的大小;
(2)圆筒的半径R;
(3)保持M、N间电场强度E不变,仅将M板向上平移,粒子仍从M板边缘的P处由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图甲所示,为水平放置的间距的两块足够大的平行金属板,两板间有场强为、方向由指向的匀强电场.一喷枪从板的中央点向水平线各个方向均匀地喷出初速度大小均为的带电微粒.已知微粒的质量均为、电荷量均为,不计微粒间的相互作用、对板间电场和磁场的影响及空气阻力,取.求:

(1)微粒落在金属板上所围成的图形面积.
(2)要使微粒不落在金属板上,通过计算说明如何调节两板间的场强.
(3)在满足(2)的情况下,在两板间加垂直于纸面向里的匀强磁场,磁感应强度,调节喷枪使微粒可以向纸面内沿各个方向喷出(如图乙),求板被微粒打中的区域长度和微粒在磁场中运动的最短时间.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,左侧装置内存在着匀强磁场和方向竖直向下的匀强电场,装置上、下两极板间电势差为U,间距为L;右侧为“台形”匀强磁场区域ACDH,其中,AH//CD,AH=4L。一束电荷量大小为q、质量不等的带电粒子 (不计重力、可视为质点),从狭缝S1射人左侧装置中恰能沿水平直线运动并从狭缝S2射出,接着粒子垂直于AH、由AH的中点M射人“台形”区域,最后全部从边界AC射出。若两个区域的磁场方向均水平(垂直于纸面向里)、磁感应强度大小均为B,“台形”宽度MN=L,忽略电场、磁场的边缘效应及粒子间的相互作用。

(1)判定这束粒子所带电荷的种类,并求出粒子速度的大小;
(2)求出这束粒子可能的质量最小值和最大值;
(3)求出(2)问中偏转角度最大的粒子在“台形”区域中运动的时间。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,两平行板AB之间存在垂直纸面向里的匀强磁场,两板之间距离及板长均为d。一质子以速度v0从A板中点O垂直A板射入磁场,为使质子能从两板间射出,试求磁感应强度大小的范围。(已知质子的电荷量为e,质量为m)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在平面直角坐标系xOy中,第I象限存在沿y轴负方向的匀强电场,第IV象限存在垂直于坐标平面向外的匀强磁场,一带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经偏转电场后到达x轴上的N点,然后射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,已知M点的坐标是(0,h),N点的坐标是(2h,0),不计粒子重力,求:


(1)粒子到达N点时的速度v的大小以及v与初速度v0的夹角
(2)粒子在磁场中运动的轨道半径r;
(3)粒子从M点运动到P点的总时间t。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,静止于A处的离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左。静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E0,方向如图所示;
离子质量为m、电荷量为q;,离子重力不计。

(1)求圆弧虚线对应的半径R的大小;
(2)若离子恰好能打在NQ的中点上,求矩形区域
QNCD内匀强电场场强E的值;
(3)若撤去矩形区域QNCD的匀强电场,换为垂直纸面向里的磁场,要求离子能最终打在QN上,求磁场磁感应强度B的取值范围

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

真空中有如图所示矩形区域,该区域总高度为2h、总宽度为4h,其中上半部分有磁感应强度为B、垂直纸面向里的水平匀强磁场,下半部分有竖直向下的匀强电场,x轴恰为水平分界线,正中心恰为坐标原点O.在x=2.5h处有一与x轴垂直的足够大的光屏(图中未画出).质量为m、电荷量为q的带负电粒子源源不断地从下边界中点P由静止开始经过匀强电场加速,通过坐标原点后射入匀强磁场中.粒子间的相互作用和粒子重力均不计.

(1)若粒子在磁场中恰好不从上边界射出,求加速电场的场强E;
(2)若加速电场的场强E为(1)中所求E的4倍,求粒子离开磁场区域处的坐标值;
(3)若将光屏向x轴正方向平移,粒子打在屏上的位置始终不改变,则加速电场的场强E′多大?粒子在电场和磁场中运动的总时间多大?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为,电势为φ2。足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L。假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响。

(1)求粒子到达O点时速度的大小;
(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有2/3能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;
(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件。试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在直角坐标系xoy平面内,虚线MN平行与y轴,N点坐标(-l,0),MN与y轴正方向的匀强电场,电场强度大小为,在第四象限的某区域有方向垂直于坐标平面的圆形有界匀强磁场(图中未画出)。现有一质量为m、电荷量为e的电子,从虚线MN上的P点,以平行与x轴正方向的初速度射入电场,并从y轴上A点(0,0.5l)射出电场,此后,电子做匀速直线运动,进入磁场并从圆形有界磁场边界Q点射出,速度沿x轴负方向,不计电子重力。求:

(1)电子到达A点的速度。
(2)匀强磁场的磁感应强度B的大小。
(3)圆形有界匀强区域的最小面积S是多大。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,等边三角形AQC的边长为2L,P、D分别为AQ、AC的中点.水平线QC以下是水平向左的匀强电场,区域Ⅰ(梯形PQCD)内有垂直纸面向里的匀强磁场,磁感应强度大小为B0;区域Ⅱ(三角形APD)内的磁场方向垂直纸面向里,区域Ⅲ(虚线PD之上、三角形APD以外)的磁场与区域Ⅱ大小相等、方向相反.带正电的粒子从Q点正下方,距离Q为L的O点以某一速度射入电场,在电场力作用下以速度v0垂直QC到达该边中点N,经区域Ⅰ再从P点垂直AQ射入区域Ⅲ(粒子重力忽略不计).求: 

(1)求该粒子的比荷
(2)求该粒子从O点运动到N点的时间t1和匀强电场E;
(3)若区域Ⅱ和区域Ⅲ内磁场的磁感应强度为3B0,则粒子经过一系列运动后会返回至O点,求粒子从N点出发再回到N点的运动过程所需的时间t.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,两平行金属板E、F之间电压为U,两足够长的平行边界MN、PQ区域内,有垂直纸面向外的匀强磁场,磁感应强度为B。一质量为m、带电量为+q的粒子(不计重力),由E板中央处静止释放,经F板上的小孔射出后,垂直进入磁场,且进入磁场时与边界MN成60°角,最终粒子从边界MN离开磁场。求:

(1)粒子在磁场中做圆周运动的半径r;
(2)两边界MN、PQ的最小距离d;
(3)粒子在磁场中运动的时间t。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中物理α粒子散射实验计算题