(12分)在电视机的设计制造过程中,要考虑到地磁场对电子束偏转的影响,可采用某种技术进行消除.为确定地磁场的影响程度,需先测定地磁场的磁感应强度的大小,在地球的北半球可将地磁场的磁感应强度分解为水平分量B1和竖直向下的分量B2,其中B1沿水平方向,对电子束影响较小可忽略,B2可通过以下装置进行测量.如图11所示,水平放置的显像管中电子(质量为m,电荷量为e)从电子枪的炽热灯丝上发出后(初速度可视为0),先经电压为U的电场加速,然后沿水平方向自南向北运动,最后打在距加速电场出口水平距离为L的屏上,电子束在屏上的偏移距离为d.
(1)试判断电子束偏向什么方向;
(2)试求地磁场的磁感应强度的竖直分量B2.
(11分)如图10所示,长为L、间距为d的平行金属板间,有垂直于纸面向里的匀强磁场,磁感应强度为B,两板不带电,现有质量为m、电荷量为q的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v水平射入,欲使粒子不打在板上,求粒子速率v应满足什么条件?、
如图所示,空间存在两个匀强磁场,它们分界线是边长为3L的等边三角形APC,D、E、F三点分别在PC、CA、AP边上,AF =" PD" =" CE" = L,分界线两侧的磁场方向相反且垂直于纸面,磁感应强度大小相同,均为B,分界线外的磁场区域足够大。现有一质量为m、电荷量为q的带正电离子(不计重力),从F点以速度v向三角形内射入。
(1)如果速度v方向与PC边平行,离子第一次到分界线就经过D点,则磁感应强度B的大小是多少?
(2)如果改变磁感应强度B的大小和速度v的方向(速度v的方向均在纸平面内),使离子第一次、第二次到达分界线时依次经过D点和E点,求离子周期性运动的周期。
(3)再改变磁感应强度B的大小和速度v的方向(速度v的方向均在纸平面内),能否仍使离子第一次、第二次到达分界线时依次经过D点和E点?为什么?
图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B,在X轴上距坐标原点L的P处为离子的入射口,在Y上安放接收器,现将一带正电荷的粒子以v的速率从P处射入磁场,若粒子在y轴上距坐标原点L的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不计其重力。
(1)求上述粒子的比荷;
(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向;
(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积。
如图13所示在平面直角坐标系xOy中,,第Ⅰ、II象限存在沿y轴负方向的匀强电场,场强大小为E,第III、Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上距原点O为d的P点以速度v0垂直于y轴射入第Ⅰ象限的电场,经x轴射入磁场,已知,.不计粒子重力,求:
(1)粒子在磁场中运动的半径,画出带电粒子运动的轨迹。
(2)从粒子射入电场开始,求粒子经过x轴时间的可能值。
如图所示,在直角坐标系XOY平面内,在Y>0处有与X轴成60°角的匀强电场,场强大小E=103v/m,在Y<0处有垂直于纸面向外的匀强磁场,磁感应强度B=T。现从t=0时刻在坐标为(0,10cm)的P点由静止释放一比荷为104C/kg的带正电的微粒A,不计微粒的重力。求:
(1)微粒进入磁场后在磁场中运动的半径;
(2)第二次穿过X轴的时刻;
(3)在释放微粒A后又在电场中由静止释放另一个与A完全相同的微粒B,若要使微粒A在第二次穿过X轴到第三次穿过X轴的时间内与微粒B相遇,求微粒B释放的时刻和释放的位置。
如图甲所示,在一水平放置的隔板MN的上方,存在一磁感应强度大小为B的匀强磁场,磁场方向如图所示。O为隔板上的一个小孔,通过O点可以从不同方向向磁场区域发射电量为+q,质量为m,速率为的粒子,且所有入射的粒子都在垂直于磁场的同一平面内运动。不计重力及粒子间的相互作用。
(1)如图乙所示,与隔板成450角的粒子,经过多少时间后再次打到隔板上?此粒子打到隔板的位置与小孔的距离为多少?
(2)所有从O点射入的带电粒子在磁场中可能经过区域的面积为多少?
如图所示:在真空中,有一半径为r的圆形区域内充满垂直纸面向里的匀强磁场,磁感应强度为B,一带电粒子质量为m,电量为q,以某一速度由a点沿半径方向射入磁场,从c点射出磁场时其速度方向改变了60度,(粒子的重力可忽略)试求
(1)该粒子在磁场中运动时间t
(2)粒子做圆周运动的半径R
(3)粒子运动的速度
如右图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B=0.10 T,磁场区域半径r= m,左侧区圆心为O1,磁场向里,右侧区圆心为O2,磁场向外.两区域切点为C.今有质量m=3.2×10-26 kg.带电荷量q=1.6×10-19 C的某种离子,从左侧区边缘的A点以速度v=106 m/s正对O1的方向垂直磁场射入,它将穿越C点后再从右侧区穿出.求:
(1)该离子通过两磁场区域所用的时间.
(2)离子离开右侧区域的出射点偏离最初入射方向的侧移距离为多大?(侧移距离指垂直初速度方向上移动的距离)
11.(18分)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴。一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向与x轴的方向夹角为.不计空气阻力,重力加速度为g,求
(1)电场强度E的大小和方向;
(2)小球从A点抛出时初速度v0的大小;
(3)A点到x轴的高度h.
25.(18分)如图所示,在0≤x≤a、o≤y≤范围内有垂直于xy平面向外的匀强磁场,磁感应强度大小为B。坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~90°范围内.己知粒子在磁场中做圆周运动的半径介于到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一,求最后离开磁场的粒子从粒子源射出时的:
(1)速度大小;
(2)速度方向与y轴正方向夹角正弦。
(14分)如图甲所示,MN为竖直放置彼此平行的两块平板,板间距离为d,两板中央各有一个小孔O、O′正对,在两板间有垂直于纸面方向的磁场,磁感应强度随时间的变化如图乙所示.有一群正离子在t=0时垂直于M板从小孔O射入磁场.已知正离子质量为m、带电荷量为q,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为T0,不考虑由于磁场变化而产生的电场的影响,不计离子所受重力.求:
(1)磁感应强度B0的大小.
(2)要使正离子从O′孔垂直于N板射出磁场,正离子射入磁场时的速度v0的可能值.
设垂直于纸面向里的磁场方向为正方向.
(18分)如图所示,质量为m,电荷量为e的电子从坐标原点O处沿xOy平面射入第一象限内,射入时的速度方向不同,但大小均为v0.现在某一区域内加一方向向外且垂直于xOy平面的匀强磁场,磁感应强度大小为B,若这些电子穿过磁场后都能垂直地射到与y轴平行的荧光屏MN上,求:
(1)电子从y轴穿过的范围;
(2)荧光屏上光斑的长度;
(3)所加磁场范围的最小面积.
如图所示,有一半径为R1=1m的圆形磁场区域,圆心为O,另有一外半径为R2=m、内半径为R1的同心环形磁场区域,磁感应强度大小均为B=0.5T,方向相反,均垂直于纸面,一带正电粒子从平行极板下板P点静止释放,经加速后通过上板小孔Q,垂直进入环形磁场区域,已知点P、Q、O在同一竖直线上,上极板与环形磁场外边界相切,粒子比荷q/m=4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应,求:
(1)若加速电压U1=1.25×102V,则粒子刚进入环形磁场时的速度多大?
(2)要使粒子不能进入中间的圆形磁场区域,加速电压U2应满足什么条件?
(3)若改变加速电压大小,可使粒子进入圆形磁场区域,且能水平通过圆心O,最后返回到出发点,则粒子从Q孔进入磁场到第一次经过O点所用的时间为多少?
在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直纸面向里的匀强磁场,一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度沿-x方向射入磁场,它恰好从磁场边界与轴的交点C处沿+方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷;
(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B1,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了600角,求磁感应强度B1是多大?此次粒子在磁场中运动所用时间t是多少?