如图,在xOy平面第一象限内有平行于y轴的匀强电场和垂直于平面的匀强磁场,电场强度为E。一带电量为+q的小球从y轴上A点(0,l)以沿x轴正向的初速度进入第一象限,小球做匀速圆周运动,并从x轴上C点(,0)离开电磁场。如果撤去磁场,且将电场反向(场强大小仍为E),带电小球以相同的初速度从A点进入第一象限,仍然从x轴上C点离开电场。求:(重力加速度为g)
(1)小球从A点出发时的初速度大小;
(2)磁感应强度B的大小;
(3)若第一象限内存在的磁场区域为矩形,求该区域最小面积。
如图所示,左侧为粒子加速器,A中产生粒子的速度从0到某一很小值之间变化,粒子的质量为m,电荷量为q(q>0),经过电压U加速,穿过狭缝S1进入中间的速度选择器。选择器中的电场强度为E0,磁感应强度为B0。粒子穿过狭缝S2进入右侧的粒子偏转区,最后要求落到屏上的P点。已知偏转区宽度为L,P点离O点的距离为L/2,不计重力。
(1)求粒子刚进入狭缝S1时速度v1的大小(不计粒子在A中的速度);
(2)求粒子通过速度选择器刚进入狭缝S2时速度v2的大小;
(3)请你提出一种简单方案,使粒子在偏转区内从S2飞入恰好能打到屏上的P点。
要求:①在答卷图上的粒子偏转区内画出示意图(注意规范);②求出你所用方案中涉及到的一个最关键的物理量的大小。
如图所示是质谱仪示意图,图中离子源S产生电荷量为q的离子,经电压为U的电场加速后,由A点垂直射人磁感应强度为B的有界匀强磁场中,经过半个圆周,打在磁场边界底片上的P点,测得PA=d,求离子的质量m。
如图所示,条形区域Ⅰ和Ⅱ内分别存在方向垂直于纸面向外和向里的匀强磁场,磁感应强度B的大小均为0.3T,AA′、BB′、CC′、DD′为磁场边界,它们相互平行,条形区域的长度足够长,磁场宽度及BB′、CC′之间的距离d=1m。一束带正电的某种粒子从AA′上的O点以沿与AA′成60°角、大小不同的速度射入磁场,当粒子的速度小于某一值v0时,粒子在区域Ⅰ内的运动时间均为t0=4×10-6s;当粒子速度为v1时,刚好垂直边界BB′射出区域Ⅰ。取π≈3,不计粒子所受重力。 求:
(1)粒子的比荷q/m;
(2)速度v0和v1的大小;
(3)速度为v1的粒子从O到DD′所用的时间。
如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R。以O为圆心、R为半径的圆形区域内存在磁感应强度为B.方向垂直纸面向外的匀强磁场。D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板。质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场。粒子在s1处的速度和粒子所受的重力均不计。当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t的最小值。
如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad边中点O,方向垂直磁场向里射入一速度方向跟ad边夹角θ = 30°、大小为v0的带正电粒子,已知粒子质量为m,电荷量为q,ad边长为L,ab边足够长,粒子重力不计,求:
(1)粒子能从ab边上射出磁场的v0大小范围.
(2)设带电粒子不受上述v0大小范围的限制,求粒子在磁场中运动的最长时间.
如图所示,M、N为中心开有小孔的平行板电容器的两极板,相距为d,其右侧有一边长为2a的正三角形区域,区域内有垂直纸面向里的匀强磁场,在极板M、N之间加上电压U后,M板电势高于N板电势.现有一带正电的粒子,质量为m,电荷量为q,其重力和初速度均忽略不计,粒子从极板M的中央小孔s1处飘入电容器,穿过小孔s2后从距三角形A点a的P处垂直AB方向进入磁场,试求:
(1)粒子到达小孔s2时的速度和从小孔s1运动到s2所用的时间;
(2)若粒子从P点进入磁场后经时间t从AP间离开磁场,求粒子的运动半径和磁感应强度的大小;
(3)若粒子能从AC间离开磁场,磁感应强度应满足什么条件,此时所用最短时间为多少?
如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60°.一质量为m、带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30°角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场.已知该粒子从射入到射出磁场所用的时间为t,求:
(1)画出粒子在磁场Ⅰ和Ⅱ中的运动轨迹;
(2)粒子在磁场Ⅰ和Ⅱ中的轨道半径R1和R2比值;
(3)Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力).
在现代科学实验室中,经常用磁场来控制带电粒子的运动。有这样一个仪器的内部结构简化如图:1、2两处的条形匀强磁场区边界竖直,相距为L,磁场方向相反且垂直于纸面。一质量为m、电量为-q,重力不计的粒子,粒子以速度V平行于纸面射入1区,射入时速度与水平方向夹角θ=30 °。
(1)当1区磁感应强度大小B1=B0时,粒子从1区右边界射出时速度与竖直边界方向夹角为60°,求B0及粒子在Ⅰ区运动的时间t。
(2)若2区B2=B1=B0,求粒子在1区的最高点与2区的最低点之间的高度差h。
(3)若B1=B0,为使粒子能返回1区,求B2应满足的条件。
如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:
(1)粒子在磁场中的轨道半径r1
(2)两板间电压的最大值Um;
(3)粒子在磁场中运动的最长时间tm。
带电粒子的质量 m=1.7×10-27kg,电荷量 q=1.6×10-19C,以速度 v =3.2×106m/s 沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B=0.17 T,磁场的宽度L=10 cm,如图所示。不计重力,求:
(1)带电粒子离开磁场时的偏转角θ多大?
(2)带电粒子在磁场中运动多长时间?
如图所示,一个质量为m、电量为+q的带电粒子从A孔以初速度v0垂直于AD进入磁感应强度为B的匀强磁场中,并恰好从C孔垂直于OC射入匀强电场中,电场方向跟OC平行,OC⊥AD,最后打在D点,且。若已知m,q,v0,B,不计重力,试求:
(1)粒子由A运动到D点所需时间;
(2)粒子抵达D点时的动能.
如图,纸面内有E、F、G三点,∠GEF=30°,∠EFG=135°.空间有一匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.先使带有电荷量为q(q>0)的点电荷a在纸面内垂直于EF从F点射出,其轨迹经过G点;再使带有同样电荷量的点电荷b在纸面内与EF成一定角度从E点射出,其轨迹也经过G点.两点电荷从射出到经过G点所用的时间相同,且经过G点时的速度方向也相同.已知点电荷a的质量为m,轨道半径为R,不计重力.求:
(1)点电荷a从射出到经过G点所用的时间;
(2)点电荷b的速度大小.
从粒子源不断发射相同的带电粒子,初速度可忽略不计,这些粒子经电场加速后,从M孔以平行于MN方向进入一个边长为d的正方形的磁场区域MNQP,如图7所示,磁感应强度大小为B,方向垂直纸面向外,其中PQ的中点S开有小孔,外侧紧贴PQ放置一块荧光屏。当把加速电压调节为U时,这些粒子刚好经过孔S打在荧光屏上,不计粒子的重力和粒子间的相互作用。
(1)请说明粒子的电性
(2)求出粒子的比荷。