如图所示,左侧为粒子加速器,A中产生粒子的速度从0到某一很小值之间变化,粒子的质量为m,电荷量为q(q>0),经过电压U加速,穿过狭缝S1进入中间的速度选择器。选择器中的电场强度为E0,磁感应强度为B0。粒子穿过狭缝S2进入右侧的粒子偏转区,最后要求落到屏上的P点。已知偏转区宽度为L,P点离O点的距离为L/2,不计重力。
(1)求粒子刚进入狭缝S1时速度v1的大小(不计粒子在A中的速度);
(2)求粒子通过速度选择器刚进入狭缝S2时速度v2的大小;
(3)请你提出一种简单方案,使粒子在偏转区内从S2飞入恰好能打到屏上的P点。
要求:①在答卷图上的粒子偏转区内画出示意图(注意规范);②求出你所用方案中涉及到的一个最关键的物理量的大小。
如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad边中点O,方向垂直磁场向里射入一速度方向跟ad边夹角θ = 30°、大小为v0的带正电粒子,已知粒子质量为m,电荷量为q,ad边长为L,ab边足够长,粒子重力不计,求:
(1)粒子能从ab边上射出磁场的v0大小范围.
(2)设带电粒子不受上述v0大小范围的限制,求粒子在磁场中运动的最长时间.
在现代科学实验室中,经常用磁场来控制带电粒子的运动。有这样一个仪器的内部结构简化如图:1、2两处的条形匀强磁场区边界竖直,相距为L,磁场方向相反且垂直于纸面。一质量为m、电量为-q,重力不计的粒子,粒子以速度V平行于纸面射入1区,射入时速度与水平方向夹角θ=30 °。
(1)当1区磁感应强度大小B1=B0时,粒子从1区右边界射出时速度与竖直边界方向夹角为60°,求B0及粒子在Ⅰ区运动的时间t。
(2)若2区B2=B1=B0,求粒子在1区的最高点与2区的最低点之间的高度差h。
(3)若B1=B0,为使粒子能返回1区,求B2应满足的条件。
真空区域有宽度为L、磁感应强度为B的匀强磁场,磁场方向如图所示,MN、PQ是磁场的边界.质量为m、电荷量为+q的粒子沿着与MN夹角为θ=60°的方向垂直射入磁场中,粒子不能从PQ边界射出磁场(不计粒子重力的影响),求:
(1)粒子射入磁场的速度大小范围.
(2)若粒子刚好不能从PQ边飞出时在磁场中运动的时间.
如图所示,电子显像管由电子枪、加速电场、偏转磁场及荧光屏组成。在加速电场右侧有相距为D.长为L的两平板,两平板构成的矩形区域内存在方向垂直纸面向外的匀强磁场,磁场的右边界与荧光屏之间的距离也为d。荧光屏中点O与加速电极上两小孔S1、S2位于两板的中线上。从电子枪发射质量为m、电荷量为 –e的电子,经恒定电压为U0的加速电场后从小孔S2射出,经磁场偏转后,最后打到荧光屏上。若,不计电子在进入加速电场前的速度。
(1)求电子进入磁场时的速度大小;
(2)电子到达荧光屏的位置与O点距离有最大值,求此时磁感应强度B的大小;
如图所示,粒子源S能在图示纸面内的360°范围内发射速率相同、质量为m、电量为+q的同种粒子(重力不计),MN是足够大的竖直挡板,S到板的距离为L,挡板左侧充满垂直纸面向外的匀强磁场,磁感应强度为B,求:
(1)粒子速度至少为多大,才能有粒子到达挡板?
(2)若S发射的粒子速率为,则挡板能被粒子击中部分的长度为多少?
(3)若S发射的粒子速率为,粒子到达挡板的最短时间是多少?
质量为m、电荷量为q的带负电粒子由静止开始释放,经M、N板间的电场加速后,从A点垂直于磁场边界射入宽度为d的匀强磁场中,该粒子离开磁场时的位置P偏离入射方向的距离为L,如图所示。已知M、N两板间的电压为U,粒子的重力不计。求:匀强磁场的磁感应强度B。
如图所示,第二、三象限存在足够大的匀强电场,电场强度为E,方向平行于纸面向上,一个质量为m,电量为q的正粒子,在x轴上M点(-4r,0)处以某一水平速度释放,粒子经过y轴上N点(0,2r)进入第一象限,第一象限存在一个足够大的匀强磁场,其磁感应强度B=2,方向垂直于纸面向外,第四象限存在另一个足够大的匀强磁场,其磁感应强度B=2,方向垂直于纸面向里,不计粒子重力,r为坐标轴每个小格的标度,试求:
(1)粒子初速度v0;
(2)粒子第1次穿过x轴时的速度大小和方向;
(3)画出粒子在磁场中运动轨迹并求出粒子第n次穿过x轴时的位置坐标。
如图所示,PN和MQ两板平行且板间存在垂直纸面向里的匀强磁场,两板间距离及PN和MQ长均为d,一带正电的质子从PN板的正中间O点以速度v0垂直射入磁场,为使质子能射出两板间,试求磁感应强度B的大小.已知质子带电荷量为e,质量为m.
如图所示,空间某平面内有一条折线是磁场的分界线,在折线的两侧分布着方向相反、与平面垂直的匀强磁场,磁感应强度大小都为B。折线的顶角∠A=90°,P、Q是折线上的两点,AP=AQ=L。现有一质量为m、电荷量为q的带负电微粒从P点沿PQ方向射出,不计微粒的重力。
(1)若P、Q间外加一与磁场方向垂直的匀强电场,能使速度为v0射出的微粒沿PQ直线运动到Q点,则场强为多大?
(2)撤去电场,为使微粒从P点射出后,途经折线的顶点A而到达Q点,求初速度v应满足什么条件?
如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:
(1)粒子在磁场中的轨道半径r1
(2)两板间电压的最大值Um;
(3)粒子在磁场中运动的最长时间tm。
带电粒子的质量 m=1.7×10-27kg,电荷量 q=1.6×10-19C,以速度 v =3.2×106m/s 沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B=0.17 T,磁场的宽度L=10 cm,如图所示。不计重力,求:
(1)带电粒子离开磁场时的偏转角θ多大?
(2)带电粒子在磁场中运动多长时间?
如图所示,一个质量为m、电量为+q的带电粒子从A孔以初速度v0垂直于AD进入磁感应强度为B的匀强磁场中,并恰好从C孔垂直于OC射入匀强电场中,电场方向跟OC平行,OC⊥AD,最后打在D点,且。若已知m,q,v0,B,不计重力,试求:
(1)粒子由A运动到D点所需时间;
(2)粒子抵达D点时的动能.
如图,纸面内有E、F、G三点,∠GEF=30°,∠EFG=135°.空间有一匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.先使带有电荷量为q(q>0)的点电荷a在纸面内垂直于EF从F点射出,其轨迹经过G点;再使带有同样电荷量的点电荷b在纸面内与EF成一定角度从E点射出,其轨迹也经过G点.两点电荷从射出到经过G点所用的时间相同,且经过G点时的速度方向也相同.已知点电荷a的质量为m,轨道半径为R,不计重力.求:
(1)点电荷a从射出到经过G点所用的时间;
(2)点电荷b的速度大小.