如图所示的狭长区域内有垂直于纸面向里的匀强磁场,区域的左、右两边界均沿竖直方向,磁场左、右两边界之间的距离L,磁场磁感应强度的大小为B.某种质量为m,电荷量q的带正电粒子从左边界上的P点以水平向右的初速度进入磁场区域,该粒子从磁场的右边界飞出,飞出时速度方向与右边界的夹角为30º。重力的影响忽略不计。
(1)求该粒子在磁场中做圆周运动的轨道半径;
(2)求该粒子的运动速率;
(3)求该粒子在磁场中运动的时间;
如图所示,在x轴上方有磁感应强度为B的匀强磁场,一个质量为m,电荷量为的粒子,以速度v从O点射入磁场,已知,粒子重力不计,求:
(1)粒子的运动半径,并在图中定性地画出粒子在磁场中运动的轨迹;
(2)粒子在磁场中运动的时间;
(3)粒子经过x轴和y轴时的坐标.
如图所示装置的左半部分为速度选择器,相距为d的两块平行金属板分别连在电压可调的电源两极上(上板接正极),板间存在方向垂直纸面向里、磁感应强度为B0的匀强磁场;右半部分为一半径为R的半圆形磁场区域,内有垂直纸面向外、磁感应强度为B的匀强磁场.矩形abcd相切于半圆,小孔M、N连线延长线经过圆心O点且与ad垂直.一束质量为m、带电量为+q的离子(不计重力)以不同速率沿MN方向从M孔射入.
(1)金属板间电压为U0时,求从N孔射出的离子的速度大小;
(2)要使离子能打到ab上,求金属板间电压U的取值范围.
电视机的显象管中,电子束的偏转是用磁偏转技术实现的。电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r,当不加磁场时,电子束将通过O点而打到屏幕的中心M点,为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度B应为多少?
如图所示,一个质量为m,带q(q >0)电量的粒子在BC边上的M点以速度v垂直于BC边飞入正三角形ABC。为了使该粒子能在AC边上的N点垂直于AC边飞出该三角形,可在适当的位置加一个垂直于纸面向里、磁感应强度为B的匀强磁场。若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力,试求:
(1)画出正三角形区域磁场的边长最小时的磁场区域及粒子运动的轨迹。
(2)该粒子在磁场里运动的时间t。
(3)该正三角形区域磁场的最小边长。
如图甲所示,在空间存在垂直纸面向里的场强为B的匀强磁场,其边界AB、CD相距为d,在左边界的Q点处有一个质量为m、带电量大小为q的负电粒子,沿着与左边界成30°的方向射入磁场,粒子重力不计,求:
(1)带电粒子能从AB边界飞出的最大速度;
(2)若带电粒子能垂直于CD边界飞出磁场,穿过小孔进入如图乙所示的匀强电场中减速至零且不碰到负极板,则极板间电压以及整个过程中粒子在磁场中运动的时间为多少?
(3)若带电粒子的速度为(2)中速度的倍,并可以从Q点沿纸面各个方向射入磁场,则粒子能打到CD边界的长度为多少?
如图,在xOy平面第一象限内有平行于y轴的匀强电场和垂直于平面的匀强磁场,电场强度为E。一带电量为+q的小球从y轴上A点(0,l)以沿x轴正向的初速度进入第一象限,小球做匀速圆周运动,并从x轴上C点(,0)离开电磁场。如果撤去磁场,且将电场反向(场强大小仍为E),带电小球以相同的初速度从A点进入第一象限,仍然从x轴上C点离开电场。求:(重力加速度为g)
(1)小球从A点出发时的初速度大小;
(2)磁感应强度B的大小;
(3)若第一象限内存在的磁场区域为矩形,求该区域最小面积。
(14分)如图所示,在MN左侧有相距为d的两块正对的平行金属板P、Q,板长L=,两板带等量异种电荷,上极板带负电。在MN右侧存在垂直于纸面的矩形匀强磁场(图中未画出),其左边界和下边界分别与MN、AA′重合(边界上有磁场)。现有一带电粒子以初速度v0沿两板中央OO′射入,并恰好从下极板边缘射出,又经过在矩形有界磁场中的偏转,最终垂直于MN从A点向左水平射出。已知A点与下极板右端的距离为d。不计带电粒子重力。求:
(1)粒子从下极板边缘射出时的速度;
(2)粒子从O运动到A经历的时间;
(3)矩形有界磁场的最小面积。
如图所示是质谱仪示意图,图中离子源S产生电荷量为q的离子,经电压为U的电场加速后,由A点垂直射人磁感应强度为B的有界匀强磁场中,经过半个圆周,打在磁场边界底片上的P点,测得PA=d,求离子的质量m。
一质量为m、带电量为q的粒子以速度v0从O点沿y轴正方向射入磁感强度为B的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从b处穿过x轴,速度方向与x轴正向夹角为30°,如图所示(粒子重力忽略不计)。试求:圆形磁场区的最小面积;
如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R。以O为圆心、R为半径的圆形区域内存在磁感应强度为B.方向垂直纸面向外的匀强磁场。D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板。质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场。粒子在s1处的速度和粒子所受的重力均不计。当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t的最小值。
如图所示,在y>0的区域内有沿y轴正方向的匀强电场,在y<0的区域内有垂直坐标平面向里的匀强磁场。一电子(质量为m、电量为e)从y轴上A点以沿x轴正方向的初速度v0开始运动。当电子第一次穿越x轴时,恰好到达C点;当电子第二次穿越x轴时,恰好到达坐标原点;当电子第三次穿越x轴时,恰好到达D点。C、D两点均未在图中标出。已知A、C点到坐标原点的距离分别为d、2d。不计电子的重力。求
(1)电场强度E的大小;
(2)磁感应强度B的大小;
(3)电子从A运动到D经历的时间t.
如图所示,M、N为中心开有小孔的平行板电容器的两极板,相距为d,其右侧有一边长为2a的正三角形区域,区域内有垂直纸面向里的匀强磁场,在极板M、N之间加上电压U后,M板电势高于N板电势.现有一带正电的粒子,质量为m,电荷量为q,其重力和初速度均忽略不计,粒子从极板M的中央小孔s1处飘入电容器,穿过小孔s2后从距三角形A点a的P处垂直AB方向进入磁场,试求:
(1)粒子到达小孔s2时的速度和从小孔s1运动到s2所用的时间;
(2)若粒子从P点进入磁场后经时间t从AP间离开磁场,求粒子的运动半径和磁感应强度的大小;
(3)若粒子能从AC间离开磁场,磁感应强度应满足什么条件,此时所用最短时间为多少?
如图所示,M、N为中心开有小孔的平行板电容器的两极板,相距为d,其右侧有一边长为2a的正三角形区域,区域内有垂直纸面向里的匀强磁场,在极板M、N之间加上电压U后,M板电势高于N板电势.现有一带正电的粒子,质量为m,电荷量为q,其重力和初速度均忽略不计,粒子从极板M的中央小孔s1处飘入电容器,穿过小孔s2后从距三角形A点a的P处垂直AB方向进入磁场,试求:
(1)粒子到达小孔s2时的速度和从小孔s1运动到s2所用的时间;
(2)若粒子从P点进入磁场后经时间t从AP间离开磁场,求粒子的运动半径和磁感应强度的大小;
(3)若粒子能从AC间离开磁场,磁感应强度应满足什么条件,此时所用最短时间为多少?