如图所示,在以O为圆心,半径为R=l0cm的圆形区域内,有一个水平方向的匀强磁场,磁感应强度大小为B="0." 10 T,方向垂直纸面向外.竖直平行放置的两个金属板A、K连在如右图所示的电路中.电源电动势E=" 91" V,内阻r=1.O,定值电阻=l0,滑动变阻器的最大阻值为80 ,、为A、K板上的两个小孔,且,、与O都在同一水平直线上,另有一水平放置的足够长的荧光屏D,O点跟荧光屏D之间的距离为H="3" R.比荷(带电粒子的电量与质量之比)为2.0×l0C/kg的带正电的粒子由进入电场后,通过向磁场中心射去,通过磁场后打到荧光屏D上.粒子进入电场的初速度、重力均可忽略不计.
(1)如果粒子垂直打在荧光屏上的P点,电压表的示数为多大?
(2)调节滑动变阻器滑片P的位置,求粒子打到荧光屏的范围.
(11分)如图10所示,长为L、间距为d的平行金属板间,有垂直于纸面向里的匀强磁场,磁感应强度为B,两板不带电,现有质量为m、电荷量为q的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v水平射入,欲使粒子不打在板上,求粒子速率v应满足什么条件?、
如图所示,在圆形区域内存在垂直纸面向外的匀强磁场,ab是圆的直径。一带电粒子从a点射入磁场,速度大小为v、方向与ab成30°角时,恰好从b点飞出磁场,且粒子在磁场中运动的时间为t;若同一带电粒子从a点沿ab方向射入磁场,也经时间t飞出磁场,则其速度大小为
A. | B. | C. | D. |
图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B,在X轴上距坐标原点L的P处为离子的入射口,在Y上安放接收器,现将一带正电荷的粒子以v的速率从P处射入磁场,若粒子在y轴上距坐标原点L的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不计其重力。
(1)求上述粒子的比荷;
(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向;
(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积。
如图所示,一个电子(电量为e)以速度v0垂直射入磁感应强度为B,宽为d的匀强磁场中,穿出磁场的速度方向与电子原来的入射方向的夹角为30°,(电子重力忽略不计),求:
(1)电子的质量m
(2)穿过磁场的时间t
两个电荷量分别为q和-q的带电粒子分别以速度va和vb射入匀强磁场,两粒子的入射方向与磁场边界的夹角分别为30°和60°,磁场宽度为d,两粒子同时由A点出发,同时到达B点,如图所示,则( )
A.a粒子带正电,b粒子带负电 |
B.两粒子的轨道半径之比Ra∶Rb=∶1 |
C.两粒子的质量之比ma∶mb=1∶2 |
D.两粒子的速度之比va∶vb=1∶2 |
如图所示,在足够长的绝缘板MN上方距离为d的O点处,水平向左发射一个速率为v0,质量为、电荷为的带正电的粒子(不考虑粒子重力)。
(1)若在绝缘板上方加一电场强度大小为、方向竖直向下的匀强电场,求带电粒子打到板上距P点的水平距离(已知);
(2)若在绝缘板的上方只加一方向垂直纸面,磁感应强度的匀强磁场,求:①带电粒子在磁场中运动半径; ②若O点为粒子发射源,能够在纸面内向各个方向发射带电粒子(不考虑粒子间的相互作用),求发射出的粒子打到板上的最短时间。
如图所示,在半径为R的圆形匀强磁场,磁感应强度为B,方向垂直于圆平面向里,PQ为磁场圆的一直径。比荷相同不计重力的负离子a和b以相同速率,由P点在纸平面内分别与PQ夹和沿PQ射入磁场中发生偏转后,又飞出磁场,则下列说法正确的是( )
A.离子射出磁场时动能一定相等 |
B.离子射出磁场时速度一定不同 |
C.如果离子a从Q点射出磁场,则离子b在磁场中的运动半径为R |
D.如果离子b射出磁场时偏转角为900, 则离子a和b在磁场中的运动时间比为4:3 |
如图a、b、c为三个完全相同的带正电荷的油滴,在真空中从相同高度由静止下落到同一水平面,a下落中有水平匀强电场,b下落中有水平向里的匀强磁场,三油滴落地时间设为ta、tb、tc,落地时速度分别va、vb、vc,则( )
A.ta=tb=tc,va=vb=vc | B.ta=tb=tc,va>vb=vc |
C.tb>ta=tc,va=vb=vc | D.tb>ta=tc,va>vc=vb |
带电粒子的质量 m=1.7×10-27kg,电荷量 q=1.6×10-19C,以速度 v =3.2×106m/s 沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B=0.17 T,磁场的宽度L=10 cm,如图所示。不计重力,求:
(1)带电粒子离开磁场时的偏转角θ多大?
(2)带电粒子在磁场中运动多长时间?
如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场,一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进人磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的正负是( )
A.,正电荷 | B.,正电荷 | C.,负电荷 | D.,负电荷 |
如图,纸面内有E、F、G三点,∠GEF=30°,∠EFG=135°.空间有一匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.先使带有电荷量为q(q>0)的点电荷a在纸面内垂直于EF从F点射出,其轨迹经过G点;再使带有同样电荷量的点电荷b在纸面内与EF成一定角度从E点射出,其轨迹也经过G点.两点电荷从射出到经过G点所用的时间相同,且经过G点时的速度方向也相同.已知点电荷a的质量为m,轨道半径为R,不计重力.求:
(1)点电荷a从射出到经过G点所用的时间;
(2)点电荷b的速度大小.
带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛仑兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将( )
A.可能做直线运动 | B.可能做匀减速运动 |
C.一定做曲线运动 | D.可能做匀速圆周运动 |
如图所示.带正电粒子的质量为m,以速度v沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B,磁场的宽度为,若带电粒子离开磁场时的速度偏转角,不计带电粒子的重力
(1)求带电粒子的电荷量
(2)求带电粒子在磁场中运动的时间
如图所示,带有正电荷的A粒子和B粒子先后以同样大小的速度从宽度为d的有界匀强磁场的边界上的O点分别以30°和60°(与边界的夹角)射入磁场,又都恰好不从另一边界飞出,则下列说法中正确的是( )
A.A、B两粒子在磁场中做圆周运动的半径之比是
B.A、B两粒子在磁场中做圆周运动的半径之比是
C.A、B两粒子之比是
D.A、B两粒子之比是