光滑水平导轨宽L=1m,电阻不计,左端接有"6V 6W"的小灯。导轨上垂直放有一质量m=0.5kg、电阻r=2Ω的直导体棒,导体棒中间用细绳通过定滑轮吊一质量为M=1kg的钩码,钩码距地面高h=2m,如图所示。整个导轨处于竖直方向的匀强磁场中,磁感应强度为B=2T。释放钩码,在钩码落地前的瞬间,小灯刚好正常发光。(不计滑轮的摩擦,取g=10m/s2)求:⑴钩码落地前的瞬间,导体棒的加速度;⑵在钩码落地前的过程中小灯泡消耗的电能;⑶在钩码落地前的过程中通过电路的电量。
如图所示,光滑平行的金属导轨MN、PQ相距l,其框架平面与水平面成角,在M点和P点间接一个阻值为R的电阻,在两导轨间矩形区域内有垂直导轨平面向下、宽为d的匀强磁场,磁感应强度为B.一质量为m、电阻为r的导体棒ab,垂直搁置于导轨上,与磁场上边界相距d0,现使它由静止开始运动,在棒ab离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计).求:
(1)棒ab在离开磁场下边界时的速度,
(2)棒ab通过磁场区的过程中整个电路所消耗的电能.
如图所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直、磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略.初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度v0.在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触.
(1)求初始时刻导体棒受到的安培力.
(2)若导体棒从初始时刻到速度第一次为零时,弹簧的弹性势能为Ep,则这一过程中安培力所做的功W1和电阻R上产生的焦耳热Q1分别为多少?
(3)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到最终静止的过程中,电阻R上产生的焦耳热Q为多少?
如图所示,一半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过导线接一对水平放置的平行金属板,两板间的距离为d,板长为l,t=0时,磁场的磁感应强度B从B0开始均匀增大,同时,在板2的左端且非常靠近板2的位置有一质量为m、带电量为-q的液滴以初速度v0水平向右射入两板间,该液滴可视为质点。
⑴要使该液滴能从两板间射出,磁感应强度随时间的变化率K应满足什么条件?
⑵要使该液滴能从两板间右端的中点射出,磁感应强度B与时间t应满足什么关系?
电磁炉专用平底锅的锅底和锅壁均由耐高温绝缘材料制成.起加热作用的是安在锅底的一系列半径不同的同心导电环.导电环所用的材料单位长度的电阻R=0.125Ω/m,从中心向外第n个同心圆环的半径为rn="(2n-1)" r1(n为正整数且n≤7),已知r1="1.0" cm.当电磁炉开启后,能产生垂直于锅底方向的变化磁场,已知该磁场的磁感应强度B的变化率为,忽略同心导电圆环感应电流之间的相互影响.
(1)求出半径为rn的导电圆环中产生的感应电动势瞬时表达式;
(2))半径为r1的导电圆环中感应电流的最大值I1m是多大?(计算中可取="10" )
(3)若不计其他损失,所有导电圆环的总功率P是多大?
如图所示,在xoy平面内存在B=2T的匀强磁场,OA与OCA为置于竖直平面内的光滑金属导轨,其中OCA满足曲线方程,C为导轨的最右端,导轨OA与OCA相交处的O点和A点分别接有体积可忽略的定值电阻R1=6Ω和R2=12Ω。现有一长L=1m、质量m=0.1kg的金属棒在竖直向上的外力F作用下,以v=2m/s的速度向上匀速运动,设棒与两导轨接触良好,除电阻R1、R2外其余电阻不计,求:
(1)金属棒在导轨上运动时R2上消耗的最大功率
(2)外力F的最大值
(3)金属棒滑过导轨OCA过程中,整个回路产生的热量。
如图所示,MN和PQ是两根放在竖直面内且足够长的平行金属导轨,相距l=50cm。导轨处在垂直纸面向里的磁感应强度B=5T的匀强磁场中。一根电阻为r=0.1Ω的金属棒ab可紧贴导轨左右运动。两块平行的、相距d=10cm、长度L=20cm的水平放置的金属板A和C分别与两平行导轨相连接,图中跨接在两导轨间的电阻R=0.4Ω。其余电阻忽略不计。已知当金属棒ab不动时,质量m=10g、带电量q=-10-3C的小球以某一速度v0沿金属板A和C的中线射入板间,恰能射出金属板(g取10m/s2)。求:
(1)小球的速度v0;
(2)若使小球在金属板间不偏转,则金属棒ab的速度大小和方向;
(3)若要使小球能从金属板间射出,则金属棒ab匀速运动的速度应满足什么条件?
如图所示,两条互相平行的光滑金属导轨位于水平面内,距离为L= 0.2m,在导轨的一端接有阻值为R=0.5Ω的电阻,在x≥0处有一与水平面垂直的均匀磁场,磁感强度B= 0.5T。一质量为m =" 0." lkg的金属直杆垂直放置在导轨上,并以v0 = 2m/s的初速度进入磁场,在安培力和一垂直于杆的水平外力F的共同作用下作匀变速直线运动,加速度大小为a=2m/s2、方向与初速度方向相反。设导轨和金属杆的电阻都可以忽略,且接触良好。求:
(1)电流为零时金属杆所处的位置
(2)电流为最大值的一半时施加在金属杆上外力F的大小和方向
(3)保持其他条件不变,而初速度v0取不同值,求开始时F的方向与初速度v0取值的关系
如图所示,在真空中速度v =6.4×107 m/s的电子束连续地射入两平行极板之间,极板长度L=8.0×10-2 m,间距d =0.50×10-2 m,两极板上加50 Hz的交流电压U=U0sinωt,如果所加电压的最大值U0超过某一值Uc时,将开始出现以下现象:电子束有时能通过两极板,有时则不能通过,求Uc的大小.(me=9.0×10-31 kg,e=1.6×10-19 C)
如图是某种静电分选器的原理示意图。两个竖直放置的平行金属板带有等量异号电荷,形成匀强电场,分选器漏斗的出口与两板上端处于同一高度,到两板距离相等。混合在一起的a、b两种颗粒从漏斗出口下落时,a种颗粒带上正电,b种颗粒带上负电。经分选电场后,a、b两种颗粒分别落到水平传送带A、B上。已知两板间距d=0.1m,板的度,电场仅局限在平行板之间;各颗粒所带电量大小与其质量之比均为。设颗粒进入电场时的初速度为零,分选过程中颗粒大小及颗粒间的相互作用力不计。要求两种颗粒离开电场区域时,不接触到极板但有最大偏转量。重力加速度g取。
(1)左右两板各带何种电荷?两极板间的电压多大?
(2)若两带电平行板的下端距传送带A、B的高度H=0.3m,颗粒落至传送带时的速度大小是多少?
(3)设颗粒每次与传送带碰撞反弹时,沿竖直方向的速度大小为碰撞前竖直方向速度大小的一半。写出颗粒第n次碰撞反弹高度的表达式。并求出经过多少次碰撞,颗粒反弹的高度小于0.01m。
如图所示,光滑平行的水平金属导轨MNPQ相距l,在M点和P点间接一个阻值为R的电阻,在两导轨间矩形区域内有垂直导轨平面竖直向下、宽为d的匀强磁场,磁感强度为B。一质量为m,电阻为r的导体棒ab,垂直搁在导轨上,与磁场左边界相距d0。现用一大小为F、水平向右的恒力拉ab棒,使它由静止开始运动,棒ab在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计)。求:
(1)棒ab在离开磁场右边界时的速度;
(2)棒ab通过磁场区的过程中整个回路所消耗的电能;
(3)试分析讨论ab棒在磁场中可能的运动情况。
如图所示,足够长金属导轨MN和PQ与R相连,平行地放在水平桌面上。质量为m的金属杆ab可以无摩擦地沿导轨运动。导轨与ab杆的电阻不计,导轨宽度为L,磁感应强度为B的匀强磁场垂直穿过整个导轨平面。现给金属杆ab一个瞬时冲量I0,使ab杆向右滑行。
(1)回路最大电流是多少?
(2)当滑行过程中电阻上产生的热量为Q时,杆ab的加速度多大?
(3)杆ab从开始运动到停下共滑行了多少距离?
如图所示,边长为L=2m的正方形导线框ABCD和一金属棒MN由粗细相同的同种材料制成,每米长电阻为R0=1/m,以导线框两条对角线交点O为圆心,半径r=0.5m的匀强磁场区域的磁感应强度为B=0.5T,方向垂直纸面向里且垂直于导线框所在平面,金属棒MN与导线框接触良好且与对角线AC平行放置于导线框上。若棒以v=4m/s的速度沿垂直于AC方向向右匀速运动,当运动至AC位置时,求(计算结果保留二位有效数字):
(1)棒MN上通过的电流强度大小和方向;
(2)棒MN所受安培力的大小和方向。
如图甲所示,一个足够长的“U”形金属导轨NMPQ固定在水平面内,MN、PQ两导轨间的宽为L=0.50m。一根质量为m=0.50kg的均匀金属导体棒ab静止在导轨上且接触良好,abMP恰好围成一个正方形。该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中。ab棒的电阻为R=0.10Ω,其他各部分电阻均不计。开始时,磁感应强度。
(1)若保持磁感应强度的大小不变,从t=0时刻开始,给ab棒施加一个水平向右的拉力,使它做匀加速直线运动。此拉力F的大小随时间t变化关系如图2乙所示。求匀加速运动的加速度及ab棒与导轨间的滑动摩擦力。
(2)若从t=0开始,使磁感应强度的大小从B0开始使其以=0.20T/s的变化率均匀增加。求经过多长时间ab棒开始滑动?(ab棒与导轨间的最大静摩擦力和滑动摩擦力相等)