如图所示,光滑平行的金属导轨MN、PQ相距l,其框架平面与水平面成角,在M点和P点间接一个阻值为R的电阻,在两导轨间矩形区域内有垂直导轨平面向下、宽为d的匀强磁场,磁感应强度为B.一质量为m、电阻为r的导体棒ab,垂直搁置于导轨上,与磁场上边界相距d0,现使它由静止开始运动,在棒ab离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计).求:(1)棒ab在离开磁场下边界时的速度,(2)棒ab通过磁场区的过程中整个电路所消耗的电能.
如图所示,在一个倾角为θ的斜面上,有一个质量为m、电量为q的带电物体,空间存在着方向垂直斜面向下的匀强磁场,磁感强度大小为B,带电物体与斜面间的动摩擦因数为μ,它在斜面上沿什么方向、以多大的速度运动,可以保持匀速直线的状态不变?
在一个水平放置的、半径为r的圆形管道内存在着匀强磁场,磁感强度大小为B,方向如图所示.管道轴线左端为O点,右端为O’点,OO’=l.一个质量为m、带电量为+q的质点沿管道轴线从左边射入,经过O点时速度大小为v0,方向指向O’点.要使质点在运动过程中能经过O’点,讨论速度v0的可能取值.
下图所示的圆形区域内存在着匀强磁场,磁感应强度大小为B,方向垂直纸面向里,该区域的半径为R.一质量为m、带电量为q的带电粒子,以速率v0()从圆周上的A点射入,v0的方向限定在纸面内.求粒子沿什么方向入射,能有最大偏转角?最大偏转角是多大?
一个质量为m,带电量为+q的带电粒子(不计重力),从图中原点O处以初速v0射入一个有界的匀强磁场中,已知v0方向为+y方向,匀强磁场的方向垂直于纸面向外(即+z方向),磁感应强度大小为B,它的边界为半径是r的圆形,O点恰在它的圆周上.粒子进入磁场后将做匀速圆周运动,已知它做圆周运动的轨道半径比圆形磁场的半径r大. (1)改变这个圆形磁场区域的圆心的位置,可改变粒子在磁场中的偏转角度.求粒子在磁场中的最大偏转角度(用反三角函数表示). (2)当粒子在磁场中的偏转角度最大时,它从磁场中射出后沿直线前进一定能打到x轴上,求满足此条件的r的取值范围.
如图所示,在虚线MN的上下两边都存在着方向垂直纸面向里的匀强磁场,上方的磁感强度为B1,下方的磁感强度为B2,已知B2=2B1.一个质量为m、带电量为q的带电粒子(不计重力)以初速v0从MN上的A点由下方垂直于MN射入上方的磁场区.已知它在运动过程中先后两次经过MN上的B点,且这两次之间的时间间隔为t.求 (1)磁感强度B1和B2的大小. (2)AB间距离的可能值.