如图,在竖直面内有两平行金属导轨AB、CD。导轨间距为L,电阻不计。一根电阻不计的金属棒ab可在导轨上无摩擦地滑动。棒与导轨垂直,并接触良好。导轨之间有垂直纸面向外的匀强磁场,磁感强度为B。导轨右边与电路连接。电路中的三个定值电阻阻值分别为2R、R和R。在BD间接有一水平放置的平行板电容器C,板间距离为d。
当ab以速度v0匀速向左运动时,电容器中质量为m的带电微粒恰好静止。试判断微粒的带电性质,及带电量的大小。
ab棒由静止开始,以恒定的加速度a向左运动。讨论电容器中带电微粒的加速度如何变化。(设带电微粒始终未与极板接触。)
如图所示,矩形线圈的匝数为N,面积为S,内阻为r,绕OO′轴以角速度ω做匀速转动.在它从如图所示的位置转过90°的过程中,下列说法正确的是( )
A.通过电阻的电荷量为 |
B.通过电阻的电荷量为 |
C.外力所做的功为 |
D.外力所做的功为 |
如图所示,两根水平放置的相互平行的金属导轨ab、cd,表面光滑,处在竖直向上的匀强磁场中,金属棒PQ垂直导轨放在上面,以速度v向右匀速运动.欲使棒PQ停下来,下面的措施可行的是(导轨足够长,棒PQ有电阻)( )
A.在PQ右侧垂直于导轨再放上一根同样的金属棒 |
B.在PQ右侧垂直于导轨再放上一根质量和电阻均比棒PQ大的金属棒 |
C.将导轨的a、c两端用导线连接起来 |
D.将导轨的a、c两端和b、d两端分别用导线连接起来 |
电阻为R的矩形线框abcd,边长ab=L,ad=h,质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h,如图所示,若线框恰好以恒定速度通过磁场,线框中产生的焦耳热是_______.(不考虑空气阻力)
如图所示,空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度=1 ,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为=0.5,现有一边长=0.2、质量=0.1 、电阻=0.1 的正方形线框以=7 的初速从左侧磁场边缘水平进入磁场,求:
(1)线框边刚进入磁场时受到安培力的大小;
(2)线框从开始进入磁场到竖直下落的过程中产生的焦耳热;
(3)线框能穿过的完整条形磁场区域的个数
如图所示,在同一平面内有四根彼此绝缘的直导线,分别通有大小相同方向如图的电流,要使由四根直导线所围成的面积内的磁通量增加,则应切断哪一根导线中的电流( )
A.切断i1; |
B.切断i2; |
C.切断i3; |
D.切断i4. |
如图11-16所示,直角三角形导线框ABC,处于磁感强度为B的匀强磁场中,线框在纸面上绕B点以匀角速度ω作顺时针方向转动,∠B =60°,∠C=90°,AB=l,求A,C两端的电势差UAC。
如图11-14所示,一闭合金属圆环用绝缘细线挂于O点,将圆环拉离平衡位置并释放,圆环摆动过程中经过有界的水平匀强磁场区域,A,B为该磁场的竖直边界,若不计空气阻力,则 [ ]
A.圆环向右穿过磁场后,还能摆至原来的高度。 |
B.在进入和离开磁场时,圆环中均有感应电流 |
C.圆环进入磁场后离平衡位置越近速度越大,感应电流也越大 |
D.圆环最终将静止在平衡位置。 |
共有100匝的矩形线圈,在磁感强度为0.1T的匀强磁场中以角速度ω=10rad/s绕线圈的中心轴旋转。已知线圈的长边a=20cm,短边b=10cm,线圈总电阻为2Ω。求(2)线圈平面转到与磁场方向夹角60°时,线圈受到的电磁力矩。
如图11-7所示装置,导体棒AB,CD在相等的外力作用下,沿着光滑的轨道各朝相反方向以0.lm/s的速度匀速运动。匀强磁场垂直纸面向里,磁感强度B=4T,导体棒有效长度都是L=0.5m,电阻R=0.5Ω,导轨上接有一只R′=1Ω的电阻和平行板电容器,它的两板间距相距1cm,试求:(l)电容器及板间的电场强度的大小和方向;
如图11-5所示,水平导轨的电阻忽略不计,金属棒ab和cd的电阻多别为Rab和Rcd,且Rab>Rcd,处于匀强磁场中。金属棒cd在力F的作用下向右匀速运动。ab在外力作用下处于静止状态,下面说法正确的是 [ ]
A.Uab>Ucd |
B.Uab=Ucd |
C.Uab<Ucd |
D.无法判断 |