一简谐横波在图中x轴上传播,实线和虚线分别是t1和t2时刻的波形图,已知t2-t1=1.0s。由图判断下列哪一个波速是不可能的( )
A.1cm/s |
B.3cm/s |
C.5cm/s |
D.10cm/s |
沿x轴正向传播的一列简谐横波在t=0时刻的波形如图所示,P为介质中的一个质点,该波的传播速度为2.5m/s,则t=0.8s时( )
A.质点P对平衡位置的位移为正值 |
B.质点P的速度方向与对平衡位置的位移方向相同 |
C.质点P的速度方向与加速度的方向相同 |
D.质点P的加速度方向与对平衡位置的位移方向相反 |
位于原点的波源在t=0开始沿y轴做简谐运动,它激起横波沿x轴传播,当t=0.15 s时,波的图像如右图所示,此时波恰好传到P点,则 ( )
A.该波源的频率是 | B.波长是 |
C.P点将向下运动 | D.P点将向上运动 |
一列沿x方向传播的横波,其振幅为A,波长为λ,某一时刻波的图像如图所示。在该时刻,某一质点的坐标为(λ,0),经过四分之一周期后,该质点的坐标为
A.λ,0 | B.λ,-A | C.λ,A | D.λ,A |
一列简谐横波沿x轴传播,t=0时刻的波形如图3甲所示,此时质点P正沿y轴负方向运动,其振动图象如图乙所示,则该波的传播方向和波速分别是( ).
A.沿x轴负方向,60 m/s | B.沿x轴正方向,60 m/s |
C.沿x轴负方向,30 m/s | D.沿x轴正方向,30 m/s |
如图所示,两列简谐横波分别沿x轴正方向和负方向传播,两波源分子位于x=-2、10-1m和x=12×10-1m处,两列波的波速均为v=0.4 m/s,两波源的振幅均为A="2" cm.图示为t=0时刻两列波的图象(传播方向如图),此刻处于平衡位置x="0.2" m和0.8 m的P、Q两质点刚开始振动.质点M的平衡位置处于x="0.5" m处.关于各质点运动情况的判断正确的是( )
A.质点P、Q都首先沿y轴正方向运动 |
B.t="0.75" s时刻,质点P、Q都运动到M点 |
C.t="1" s时刻,质点M的位移为+4 cm |
D.t="1" s时刻,质点M的位移为-4 cm |
沿x轴正向传播的一列简谐横波在t=0时刻的波形如图所示,P为介质中的一个质点,该波的传播速度为2.5m/s,则t=0.8s时
A.质点P对平衡位置的位移为正值 |
B.质点P的速度方向与对平衡位置的位移方向相同 |
C.质点P的速度方向与加速度的方向相同 |
D.质点P的加速度方向与对平衡位置的位移方向相反 |
如图所示,一列简谐横波沿x轴正方向传播。t=0时,波传播到x轴上的质点B,在它的左边质点A位于正的最大位移处,在t=0.6s时,质点A第二次出现在负的最大位移处。求:
(1)该波的周期T
(2)该波的波速v
(3)从t=0时开始到质点E第一次到达正向最大位移经历的时间及在该段时间内质点E通过的路程。
一列波长大于1m的横波沿着轴正方向传播,处在和的两质点、的振动图像如图所示。由此可知 ( )
A.波长为m |
B.波速为 |
C.末、两质点的位移相同 |
D.末点的振动速度大于点的振动速度 |
已知一列简谐横波在t=0时刻的波形图象如图所示,波沿x轴正方向传播,再经过2.2 s,P点第3次出现波峰.求:
(1)波速v为多少?
(2)由图示时刻起,Q点再经过多长时间第一次出现波峰?
(3)从图示时刻开始计时,试写出坐标为x=3 m的质点的位移与时间的关系式.
一列简谐横波沿直线传播,某时刻该列波上正好经过平衡位置的两质点相距6 m,且这两质点之间的波峰只有一个,则该简谐波可能的波长为( )
A.4 m、6 m和8 m | B.6 m、8 m和12 m |
C.4 m、6 m和12m | D.4 m、8 m和12 m |
某时刻的波形图如图所示,波沿x轴正方向传播,质点P的横坐标x=0.32m.从此时刻开始计时
若P点经0.4s第一次到达最大正位移处,求波速大小.
若P点经0.4s到达平衡位置,波速大小又如何?
一列沿x轴正方向传播的简谐横波在t = 0时刻的波形图如图所示,,已知波速v = 2m/s,试回答下列问题:
(1)求x = 2.5m处质点在0~4.5s内通过的路程及t = 4.5s时的位移;
(2)写出x =" 2.0" m处质点的振动函数表达式。