如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M、N两小孔中, O为M、N连线中点,连线上a、b两点关于O点对称。导线均通有大小相等、方向向上的电流。已知长直导线在周围产生的磁场的磁感应强度,式中k是常数、I是导线中电流、r为点到导线的距离。一带正电的小球
以初速度v0从a点出发沿连线运动到b点。关于上述过程,下列说法正确的是( )
A.小球先做加速运动后做减速运动 |
B.小球一直做匀速直线运动 |
C.小球对桌面的压力先减小后增大 |
D.小球对桌面的压力一直在增大 |
如图所示,两条导线互相垂直,其中AB固定,CD可自由活动,两者相隔一小段距离,当两导线分别通以图示方向的电流时,垂直纸面向里看导线CD将( )
A.顺时针方向转动,同时靠近AB |
B.逆时针方向转动,同时靠近AB |
C.顺时外方向转动,同时远离AB |
D.逆时针方向转动,同时远离AB |
如图所示,在竖直向下的匀强磁场中,有两根竖直放置的平行导轨AB、CD,导轨上放有质量为m的金属棒MN,棒与导轨间的动摩擦因数为μ,现从t=0时刻起,给棒通以图示方向的电流,且电流强度与时间成正比,即I=kt,其中k为恒量.若金属棒与导轨始终垂直,则如图所示的表示棒所受的摩擦力随时间变化的四幅图中,正确的是( )
如图所示,用两根相同的轻弹簧秤吊着一根铜棒,铜棒所在的虚线范围内有垂直纸面的匀强磁场,当棒中通过向右的电流且棒静止时,弹簧处于伸长状态,弹簧秤的读数均为F1;将棒中的电流反向,静止时弹簧秤的读数均为F2,且F2>F1。则由此可以确定( )
A.磁场的方向 | B.磁感应强度的大小 |
C.铜棒的质量 | D.弹簧的劲度系数 |
截流长直导线周围磁场的磁感应强度大小为,式中常量k>0,I为电流强度,r为距导线的距离。在水平长直导线MN正下方,矩形线圈abcd通以逆时针方向的恒定电流,被两根等长的轻质绝缘细线静止地悬挂,如图所示。开始时MN内不同电流,此时两细线内的张力均为。当MN通以强度为的电流时,两细线内的张力均减小为,当MN内的电流强度变为时,两细线的张力均大于
(1)分别指出强度为的电流和方向;
(2)MN分别通以强度为电流时,线框受到的安培力大小之比。
相距L=1.5m的足够长金属导轨竖直放置,质量为m1=1.0kg的金属棒ab和质量为m2=0.27kg的金属棒cd均通过棒两端的套环水平地套在金属导轨上,确保金属棒与金属导轨良好接触,如图(a)所示。虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同。ab棒光滑,cd棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为R=1.8Ω,导轨电阻不计。现有一方向竖直向下、大小按图(b)所示规律变化的外力F作用在ab棒上,使棒从静止开始沿导轨匀加速运动,与此同时cd棒也由静止释放。取重力加速度g=10m/s2。求:
(1)磁感应强度B的大小和ab棒的加速度大小;
(2)若在2s内外力F做功40J,则这一过程中两金属棒产生的总焦耳热是多少?
(3)判断cd棒将做怎样的运动,并求出cd棒达到最大速度所需的时间t0。
如图所示,质量为0.05kg,长l=0.1m的铜棒,用长度也为l的两根轻软导线水平悬挂在竖直向上的匀强磁场中,磁感应强度为B=0.5T.不通电时,轻线在竖直方向,通入恒定电流后,棒向外偏转的最大角度θ=37°,求此棒中恒定电流多大?(不考虑棒摆动过程中产生的感应电流,g取10N/kg)
同学甲的解法如下:对铜棒受力分析如图所示:
当最大偏转角θ=37°时,棒受力平衡,有:
FTcosθ=mg,FTsinθ=F安=BIl
得I==A=7.5A
同学乙的解法如下:
F安做功:WF=Fx1=BIlsin37°×lsin37°=BI(lsin37°)2
重力做功:
WG=-mgx2=-mgl(1-cos37°)
由动能定理得:WF+WG=0
代入数据解得:I=A≈5.56A
请你对甲、乙两同学的解法作出评价:若你对两者都不支持,则给出你认为正确的解答.
(16分)(2010·盐城模拟)粗细均匀的直导线ab的两端悬挂在两根相同的
弹簧下边,ab恰好处在水平位置(如图13所示).已知ab的质量为m
=10 g,长度L=60 cm,沿水平方向与ab垂直的匀强磁场的磁感应强
度B=0.4 T. 图13
(1)要使两根弹簧能处在自然状态,既不被拉长,也不被压缩,ab中应沿什么方向、通过多大的电流?
(2)当导线中有方向从a到b、大小为0.2 A的电流通过时,两根弹簧均被拉长了Δx=1 mm,求该弹簧的劲度系数.
(3)当导线中由b到a方向通过0.2 A的电流时两根弹簧被拉长多少?(取g=9.6 m/s2=
9.6 N/kg)
如图所示,平行于纸面水平向右的匀强磁场,磁感应强度B1=1T,位于纸面内的细直导线,长L=1m,通过I=1A的恒定电流.当导线与B1成60°夹角时,发现其受到的安培力为零,则该区域同时存在的另一匀强磁场的磁感应强度B2的值,不可能的是( )
A.T | B.T | C.1 T | D.T |
(10分)如图所示,倾角θ=30°、宽L=1m的足够长的U形光滑金属导轨固定在磁感应强度大小B=IT、范围足够大的匀强磁场中,磁场方向垂直导轨平面向上。一根质量m=0.2kg,电阻R=l的金属棒ab垂直于导轨放置。现用一平行于导轨向上的牵引力F作用在棒上,使棒由静止开始沿导轨向上运动,运动中ab棒始终与导轨接触良好,导轨 电阻不计,重力加速度g取l0m/s2。求:
(1)若牵引力的功率P恒为56W,则ab棒运动的最终速度为多大?
(2)当ab棒沿导轨向上运动到某一速度时撤去牵引力,从撤去牵引力到ab棒的速度为零,通过ab棒的电量q=0.5C,则撤去牵引力后ab棒向上滑动的距离多大?
如图甲所示,电阻不计的光滑平行金属导轨固定在水平面上,导轨间距L="0.5" m,左端连接R="0.5" Ω的电阻,右端连接电阻不计的金属卡环。导轨间MN右侧存在方向垂直导轨平面向下的磁场.磁感应强度的B-t图象如图乙所示。电阻不计质量为m="1" kg的金属棒与质量也为m的物块通过光滑滑轮由绳相连,绳始终处于绷紧状态。PQ、MN到右端卡环距离分别为17.5 m和15 m。t=0时刻由PQ位置静止释放金属棒,金属棒与导轨始终接触良好,滑至导轨右端被卡环卡住不动。(g取10 m/s2)求:
(1)金属棒进入磁场时受到的安培力
(2)在0~6 s时间内电路中产生的焦耳热
如图所示,竖直悬挂的弹簧下端栓有导体棒ab,ab无限靠近竖直平行导轨的内侧、与导轨处于竖直向上的磁场中,导体棒MN平行导轨处于垂直导轨平面的磁场中,当MN以速度v向右匀速运动时,ab恰好静止,弹簧无形变,现使v减半仍沿原方向匀速运动,ab开始沿导轨下滑,磁场大小均为B,导轨宽均为L,导体棒ab、MN质量相同、电阻均为R,其他电阻不计,导体棒与导轨接触良好,弹簧始终在弹性范围内,最大静摩擦力等于滑动摩擦力,则
A.MN中电流方向从M到N |
B.ab受到的安培力垂直纸面向外 |
C.ab开始下滑直至速度首次达峰值的过程中,克服摩擦产生热量 |
D.ab速度首次达到峰值时,电路的电热功率为 |
如图,竖直平面内放着两根间距L = 1m、电阻不计的足够长平行金属板M、N,两板间接一阻值R= 2Ω的电阻,N板上有一小孔Q,在金属板M、N及CD上方有垂直纸面向里的磁感应强度B0= 1T的有界匀强磁场,N板右侧区域KL上、下部分分别充满方向垂直纸面向外和向里的匀强磁场,磁感应强度大小分别为B1=3T和B2=2T。有一质量M = 0.2kg、电阻r =1Ω的金属棒搭在MN之间并与MN良好接触,用输出功率恒定的电动机拉着金属棒竖直向上运动,当金属棒达最大速度时,在与Q等高并靠近M板的P点静止释放一个比荷的正离子,经电场加速后,以v =200m/s的速度从Q点垂直于N板边界射入右侧区域。不计离子重力,忽略电流产生的磁场,取g=。求:
(1)金属棒达最大速度时,电阻R两端电压U;
(2)电动机的输出功率P;
(3)离子从Q点进入右侧磁场后恰好不会回到N板,Q点距分界线高h等于多少。
如图所示,质量为m的足够长的“[”金属导轨abcd放在倾角为θ的光滑绝缘斜面上,bc段电阻为R,其余段电阻不计。另一电阻为R、质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PbcQ构成矩形。棒与导轨间动摩擦因数为μ,棒左侧有两个固定于斜面的光滑立柱。导轨bc段长为L,以ef为界,其左侧匀强磁场垂直斜面向上,右侧匀强磁场方向沿斜面向上,磁感应强度大小均为B。在t=0时,一沿斜面方向的作用力F垂直作用在导轨的bc边上,使导轨由静止开始沿斜面向下做匀加速直线运动,加速度为a。
(1)请通过计算证明开始一段时间内PQ中的电流随时间均匀增大。
(2)求在电流随时间均匀增大的时间内棒PQ横截面内通过的电量q和导轨机械能的变化量△E。
(3)请在F-t图上定性地画出电流随时间均匀增大的过程中作用力F随时间t变化的可能关系图,并写出相应的条件。(以沿斜面向下为正方向)
如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接.轨道宽度均为L=1m,电阻忽略不计.匀强磁场I仅分布在水平轨道平面所在区域,方向水平向右,大小B1=1T;匀强磁场II仅分布在倾斜轨道平面所在区域,方向垂直于倾斜轨道平面向下,大小B2=1T.现将两质量均为m=0.2kg,电阻均为R=0.5Ω的相同导体棒ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道上,并同时由静止释放.取g=10m/s2.
(1)求导体棒cd沿斜轨道下滑的最大速度的大小;
(2)若已知从开始运动到cd棒达到最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程中通过cd棒横截面的电荷量;
(3)若已知cd棒开始运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒中无感应电流,可让磁场Ⅱ的磁感应强度随时间变化,将cd棒开始运动的时刻记为t=0,此时磁场Ⅱ的磁感应强度为B0=1T,试求cd棒在倾斜轨道上下滑的这段时间内,磁场Ⅱ的磁感应强度B随时间t变化的关系式.