如图所示,导体杆ab的质量为m,电阻为R,放置在与水平成角的倾斜金属导轨上,导轨间距为d,电阻不计,系统处于竖直向上的匀强磁场中,磁感应强度为B,电池内阻不计。
求:(1)若导轨光滑,电源电动势E多大时能使导体杆静止在导轨上?
(2)若杆与导轨之间的动摩擦因数为,且不通电时导体不能静止在导轨上,则要使杆静止在导轨上,电源的电动势应多大?
如图所示,在竖直方向上有四条间距均为L=0.5 m的水平虚线L1、L2、L3、L4,在L1L2之间、L3L4之间存在匀强磁场,大小均为1 T,方向垂直于纸面向里。现有一矩形线圈abcd,长度ad=3 L,宽度cd=L,质量为0.1 kg,电阻为1Ω,将其从图示位置静止释放(cd边与L1重合),cd边经过磁场边界线L3时恰好做匀速直线运动,整个运动过程中线圈平面始终处于竖直方向, cd边水平。(g="10" m/s2)则( )
A.cd边经过磁场边界线L3时通过线圈的电荷量为0. 5 C |
B.cd边经过磁场边界线L3时的速度大小为4 m/s |
C.cd边经过磁场边界线L2和 L4的时间间隔为0.25s |
D.线圈从开始运动到cd边经过磁场边界线L4过程,线圈产生的热量为0.7J |
如图所示,在倾角为的光滑斜面上,垂直纸面放置一根长为L,质量为m的直导体棒.在导体棒中的电流I垂直纸面向里时,欲使导体棒静止在斜面上,下列外加匀强磁场的磁感应强度B的大小和方向正确是( )
A.B=mg,方向垂直斜面向上 |
B.B=mg,方向垂直斜面向下 |
C.B=mg,方向垂直斜面向下 |
D.B=mg,方向垂直斜面向上 |
如图所示,PQ和MN是固定于水平面内的平行光滑金属轨道,轨道足够长,其电阻可忽略不计。金属棒ab、cd放在轨道上,始终与轨道垂直,且接触良好。金属棒ab、cd的质量均为m,长度均为L。两金属棒的长度恰好等于轨道的间距,它们与轨道形成闭合回路。金属棒ab的电阻为2R,金属棒cd的电阻为R。整个装置处在竖直向上、磁感应强度为B的匀强磁场中。
(1)若保持金属棒ab不动,使金属棒cd在与其垂直的水平恒力F作用下,沿轨道以速度v做匀速运动。试推导论证:在Δt时间内,F对金属棒cd所做的功W等于电路获得的电能E电;
(2)若先保持金属棒ab不动,使金属棒cd在与其垂直的水平力F′(大小未知)作用下,由静止开始向右以加速度a做匀加速直线运动,水平力F′作用t0时间撤去此力,同时释放金属棒ab。求两金属棒在撤去F′后的运动过程中,
①金属棒ab中产生的热量;
②它们之间的距离改变量的最大值Dx。
处于水平面的平行金属导轨MN与PQ间距为L,两导轨接在电动势为E,内阻为r的电源上,质量为m的直金属杆ab沿垂直导轨方向架在导轨上,ab杆的电阻为R,两金属导轨电阻不计,整个装置处于斜向上的匀强磁场中,已知磁感应强度为B,磁场方向与水平面之间的夹角为,如图所示,闭合开关S后,ab杆静止在水平导轨上不动,求此时ab杆所受摩擦力及导轨支持力为多大?
如图所示,正方形导线框ABCD、abcd的边长均为L,电阻均为R,质量分别为2m和m,它们分别系在一跨过两个定滑轮的轻绳两端,且正方形导线框与定滑轮处于同一竖直平面内。在两导线框之间有一宽度为2L、磁感应强度大小为B、方向垂直纸面向里的匀强磁场。开始时导线框ABCD的下边与匀强磁场的上边界重合,导线框abcd的上边到匀强磁场的下边界的距离为L。现将系统由静止释放,当导线框ABCD刚好全部进入磁场时,系统开始做匀速运动。不计摩擦和空气阻力,则 ( )
A.两线框刚开始做匀速运动时轻绳上的张力FT=mg
B.系统匀速运动的速度大小:
C.两线框从开始运动至等高的过程中所产生的总焦耳热
D.导线框abcd通过磁场的时间
固定不动的绝缘直导线MN和可以自由移动的矩形线圈ABCD处在同一平面内,MN与AD、BC边平行,且离AD边较近,当导线和线圈中通以如图所示的电流时,线圈的运动情况是( )
A.静止不动 | B.向左方移动 |
C.向右方移动 | D.绕MN为轴转动 |
如图,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下。导线框以某一初速度向右运动,t=0时导线框的的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域。下列v-t图像中,可能正确描述上述过程的是
如图所示,宽度的足够长的U形金属框架水平放置,框架中连接电阻,框架处在竖直向上的匀强磁场中,磁感应强度,框架导轨上放一根质量为、电阻,的金属棒,棒与导轨间的动摩擦因数,现用功率恒定的牵引力使棒从静止开始沿导轨运动(棒始终与导轨接触良好且垂直),当整个回路产生热量时刚好获得稳定速度,此过程中,通过棒的电量(框架电阻不计,取)求:
(1)当导体棒的速度达到时,导体棒上两点电势的高低?导体棒两端的电压?导体棒的加速度?
(2)导体棒稳定的速度?
(3)导体棒从静止到刚好获得稳定速度所用的时间?
如图所示,电阻不计、间距L=1m、足够长的光滑金属导轨ab、cd与水平面成θ=37°角,导轨平面矩形区域efhg内分布着磁感应强度的大小B=1T,方向垂直导轨平面向上的匀强磁场,边界ef、gh之间的距离D=1.4m。现将质量m=0.1kg、电阻的导体棒P、Q相隔Δt=0.2s先后从导轨顶端由静止自由释放,P、Q在导轨上运动时始终与导轨垂直且接触良好,P进入磁场时恰好匀速运动,Q穿出磁场时速度为2.8m/s。已知重力加速度g=10m/s2,sin37°=0.6,求
(1)导轨顶端与磁场上边界ef之间的距离S;
(2)从导体棒P释放到Q穿出磁场的过程,回路中产生的焦耳热Q总。
截流长直导线周围磁场的磁感应强度大小为,式中常量k>0,I为电流强度,r为距导线的距离。在水平长直导线MN正下方,矩形线圈abcd通以逆时针方向的恒定电流,被两根等长的轻质绝缘细线静止地悬挂,如图所示。开始时MN内不同电流,此时两细线内的张力均为。当MN通以强度为的电流时,两细线内的张力均减小为,当MN内的电流强度变为时,两细线的张力均大于
(1)分别指出强度为的电流和方向;
(2)MN分别通以强度为电流时,线框受到的安培力大小之比。
如图()所示,平行长直金属导轨水平放置,间距,导轨右端接有阻值的电阻,导体棒垂直放置在导轨上,且接触良好,导体棒及导轨的电阻均不计,导轨间正方形区域内有方向竖直向下的匀强磁场,连线与导轨垂直,长度也为,从0时刻开始,磁感应强度的大小随时间变化,规律如图()所示;同一时刻,棒从导轨左端开始向右匀速运动,后刚好进入磁场,若使棒在导轨上始终以速度做直线运动,求:
⑴棒进入磁场前,回路中的电动势;
⑵棒在运动过程中受到的最大安培力,以及棒通过三角形区域时电流与时间的关系式。
如图所示,空间存在着与圆台母线垂直向外的磁场,各处的磁感应强度大小均为B,圆台母线与竖直方向的夹角为θ。一个质量为m、半径为r的通电匀质金属环位于圆台底部,0~t时间内环中电流大小恒定为I,由静止向上运动经过时间t后撤去该恒定电流并保持圆环闭合,圆环上升的最大高度为H。已知重力加速度为g,磁场的范围足够大。在圆环向上运动的过程中,下列说法正确的是
A.圆环先做加速运动后做减速运动 |
B.在时间t内安培力对圆环做功为mgH |
C.圆环先有扩张后有收缩的趋势 |
D.圆环运动的最大速度为 |
如图所示,在倾角为37°的光滑斜面上有一根长为0.4m,质量为6×10-2kg的通电直导线,电流强度I=1A,方向垂直于纸面向外,导线用平行斜面的轻绳拴住不动,整个装置放在磁感应强度每秒增加0.4T,方向竖直向上的磁场中.设t=0时,B=0,则需要多长时间,斜面对导线的支持力为零?(g取10m/s2)