多选如图,足够长的U型光滑金属导轨平面与水平面成角(0<<90°),其中MN和PQ平行且间距为,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计。金属棒棒接入电路的电阻为,并与两导轨始终保持垂直且良好接触,使棒由静止开始沿导轨下滑,当流过棒某一横截面的电量为时,它的速度大小为,则金属棒在这一过程中:( )
A.棒运动的平均速度大小为 |
B.滑行距离为 |
C.产生的焦耳热为 |
D.受到的最大安培力大小为 |
如图所示,倾角为、宽度为、长为的光滑倾斜导轨,导轨C1D1、C2D2顶端接有定值电阻,倾斜导轨置于垂直导轨平面斜向上的匀强磁场中,磁感应强度为B=5T,C1A1、C2A2是长为S=4.5m的粗糙水平轨道,A1B1、A2B2是半径为R=0.5m处于竖直平面内的光滑圆环(其中B1、B 2为弹性挡板),整个轨道对称。在导轨顶端垂直于导轨放一根质量为m=2kg、电阻不计的金属棒MN,当开关S闭合时,金属棒从倾斜轨道顶端静止释放,已知金属棒到达倾斜轨道底端前已达最大速度,当金属棒刚滑到倾斜导轨底端时断开开关S,(不考虑金属棒MN经过接点C1、C2处和棒与B1、B2处弹性挡板碰撞时的机械能损失,整个运动过程中金属棒始终保持水平,水平导轨与金属棒MN之间的动摩擦因数为µ=0.1,g=10m/s2)。求:
(1)开关闭合时金属棒滑到倾斜轨道底端时的速度;
(2)金属棒MN在倾斜导轨上运动的过程中,电阻R0上产生的热量Q;
(3)当金属棒第三次经过A1A2时对轨道的压力。
如图所示,匀强磁场B1垂直水平光滑金属导轨平面向下,垂直导轨放置的导体棒ab在平行于导轨的外力作用下从静止开始运动,通过互感,使电压表示数U保持不变。定值电阻的阻值为R,变阻器的最大阻值为。在电场作用下,带正电粒子源从O1由静止开始经O2小孔垂直AC边射入第二个匀强磁场区,该磁场的磁感应强度为B,方向垂直纸面向外,其下边界AD与AC的夹角。设带电粒子的电荷量为q、质量为m,A端离小孔的高度为高度,请注意两线圈绕法,不计粒子重力,已知;。
求:(1)为满足要求,试判断金属棒应在外力作用下做何种运动?
(2)调节变阻器的滑动头,使接入电阻为多大时,粒子刚好不会打在AD板上?
(3)调节的滑动头,从题(2)中的位置缓慢移动到接入电阻为处 ,求源源不断的粒子打在AD边界上的落点间的最大距离(用表示)。
两根固定在水平面上的光滑平行金属导轨,一端接有阻值为的电阻,一匀强磁场在如图区域中与导轨平面垂直。在导轨上垂直导轨跨放质量的金属直杆,金属杆的电阻为,金属杆与导轨接触良好,导轨足够长且电阻不计。以位置作为计时起点,开始时金属杆在垂直杆的水平恒力作用下向右匀速运动,电阻R上的电功率是。
(1)求金属杆匀速时速度大小;
(2)若在时刻撤去拉力后,时刻R上的功率为时,求金属棒在时刻的加速度,以及-之间整个回路的焦耳热。
如图所示,纸面内有一固定的金属导轨,它由长为的直线段和以点为圆心、半径为、在处开有小缺口的圆环两部分组成. 另一直导线以 为圆心,沿逆时针方向匀速转动,周期为.直导线与导轨接触良好,导轨和直导线单位长度电阻均为.整个空间有磁感应强度为、方向垂直于纸面向外的匀强磁场.当直导线转动到与的夹角为(只考虑到达点之前的情况)时,求
(1)固定导轨消耗的电功率;
(2)圆环缺口两端的电势差.
如图,虚线框内为某种电磁缓冲车的结构示意图,其主要部件为缓冲滑块和质量为的缓冲车厢.在缓冲车的底板上,沿车的轴线固定着两个光滑水平绝缘导轨PQ、MN.缓冲车的底部,安装电磁铁(图中未画出),能产生垂直于导轨平面的匀强磁场,磁场的磁感应强度为B.导轨内的缓冲滑块由高强度绝缘材料制成,滑块上绕有闭合矩形线圈,线圈的总电阻为,匝数为,边长为.假设缓冲车以速度与障碍物碰撞后,滑块立即停下,此后线圈与轨道的磁场作用力使缓冲车厢减速运动,从而实现缓冲,一切摩擦阻力不计.
(1)求滑块的线圈中最大感应电动势的大小;
(2)若缓冲车厢向前移动距离后速度为零,缓冲车厢与障碍物和线圈的边均没有接触,则此过程线圈中通过的电量和产生的焦耳热各是多少?
如图所示,质量为m=0.1kg粗细均匀的导线,绕制成闭合矩形线框,其中长LAC=50cm,宽LAB=20cm,竖直放置在水平面上。中间有一磁感应强度B=1.0T,磁场宽度d=10cm的匀强磁场。线框在水平向右的恒力F=2N的作用下,由静止开始沿水平方向运动,使AB边进入磁场,从右侧以v=1m/s的速度匀速运动离开磁场,整个过程中始终存在大小恒定的阻力Ff=1N,且线框不发生转动。求线框AB边:
(1)离开磁场时感应电流的大小;
(2)刚进入磁场时感应电动势的大小;
(3)求线框穿越磁场的过程中产生的焦耳热。
如图所示,两根电阻不计的光滑金属导轨竖直放置,导轨上端接电阻R,宽度相同的水平条形区域I和II内有方向垂直导轨平面向里的匀强磁场B, I和II之间无磁场。一导体棒两端套在导轨上,并与两导轨始终保持良好接触,导体棒从距区域I上边界H处由静止释放,在穿过两段磁场区域的过程中,流过电阻R上的电流及其变化情况相同。下面四个图象能定性描述导体棒速度大小与时间关系的是
如图甲所示,空间存在一有界匀强磁场,磁场的左边界如虚线所示,虚线右侧足够大区域存在磁场,磁场方向竖直向下.在光滑绝缘水平面内有一长方形金属线框, ab边长为l=0.2m,线框质量m=0.1kg、电阻R=0.1Ω,在水平向右的外力F作用下,以初速度v0=1m/s匀加速进入磁场,外力F大小随时间t变化的图线如图乙所示.以线框右边刚进入磁场时开始计时,求:
(1)匀强磁场的磁感应强度B
(2)线框进入磁场的过程中,通过线框的电荷量q;
(3)若线框进入磁场过程中F做功为WF=0.27J,求在此过程中线框产生的焦耳热Q。
如图所示,两个有界匀强磁场,磁感应强度大小分别为B和2B,方向分别垂直纸面向里和向外,其宽度均为L,距磁场区域的左侧L处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直,线框一边平行于磁场边界,现用外力F使线框以图示方向的速度v匀速穿过磁场区域,以初始位置为计时起点,规定:线框中电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里时磁通量Φ为正,外力F向右为正。则以下关于线框中的磁通量Φ、感应电动势E、外力F和电功率P随时间变化的图象中正确的是
如图所示,两根足够长的光滑金属导轨MN、PQ间距为L=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止。取g=10m/s2,问:
(1)通过cd棒的电流I是多少,方向如何?
(2)棒ab受到的力F多大?
(3)力F的功率P是多少?
如图所示,光滑的“”形金属导体框竖直放置,质量为m的金属棒MN与框架接触良好.磁感应强度分别为B1、B2的有界匀强磁场方向相反,但均垂直于框架平面,分别处于abcd和cdef区域.现从图示位置由静止释放金属棒MN,当金属棒刚进入磁场B1区域时,恰好做匀速运动.以下说法正确的是( )
A.若B2=B1,金属棒进入B2区域后将加速下滑 |
B.若B2=B1,金属棒进入B2区域后仍将保持匀速下滑 |
C.若B2<B1,金属棒进入B2区域后可能先加速后匀速下滑 |
D.若B2>B1,金属棒进入B2区域后可能先匀减速后匀速下滑 |
如图所示,足够长的U型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN与PQ平行且间距为L,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计。金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab棒接入电路的电阻为R,当流过ab棒某一横截面的电量为q时,棒的速度大小为v,则金属棒ab在这一过程中( )
A.运动的平均速度大于 | B.下滑的位移大小为 |
C.受到的最大安培力大小为sinθ | D.产生的焦耳热为qBLv |
一电阻为R的金属圆环,放在匀强磁场中,磁场与圆环所在平面垂直,如图(a)所示,已知通过圆环的磁通量随时间t的变化关系如图(b)所示,图中的最大磁通量和变化周期T都是已知量,求:
(1)在t=0到t= T/4的时间内,通过金属圆环横截面的电荷量q
(2)在t=0到t=2T的时间内,金属环所产生的电热Q.