如图所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路.线圈的半径为r1.在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图(b)所示.图线与横、纵轴的交点坐标分别为t0和B0.导线的电阻不计.在0至t1时间内,下列说法正确的是( )
A.R1中电流的方向由a到b | B.通过R1电流的大小为 |
C.线圈两端的电压大小为 | D.通过电阻R1的电荷量 |
穿过某闭合回路的磁通量φ随时间t变化的图象分别如图①~④所示,下列说法正确的是( )
A.图①有感应电动势,且大小恒定不变 |
B.图②产生的感应电动势一直在变大 |
C.图③在0~t1时间内的感应电动势是t1~t2时间内感应电动势的2倍 |
D.图④产生的感应电动势先变大再变小 |
如图所示,正方形导线框ABCD、abcd的边长均为L,电阻均为R,质量分别为2m和m,它们分别系在一跨过两个定滑轮的轻绳两端,且正方形导线框与定滑轮处于同一竖直平面内.在两导线框之间有一宽度为2L、磁感应强度大小为B、方向垂直纸面向里的匀强磁场.开始时导线框ABCD的下边与匀强磁场的上边界重合,导线框abcd的上边到匀强磁场的下边界的距离为L.现将系统由静止释放,当导线框ABCD刚好全部进入磁场时,系统开始做匀速运动,不计摩擦的空气阻力,则( )
A. 两线框刚开始做匀速运动时轻绳上的张力FT=mg
B. 系统匀速运动的速度大小v=
C. 两线框从开始运动至等高的过程中所产生的总焦耳热Q=2mgL-
D. 导线框abcd通过磁场的时间t=
如图所示,单匝闭合金属线圈的面积为S,电阻为R,垂直于磁感线放在匀强磁场中,磁场的磁感应强度大小为B0。从某时刻起(记为t=0时刻)磁感应强度的大小发生变化,但方向不变。在0~t1这段时间内磁感应强度B随时间变化的规律B=kt+B0(k为一个正的常数)。在0~t1这段时间内,线圈中感应电流 ( )
A.方向为逆时针方向,大小为 |
B.方向为顺时针方向,大小为 |
C.方向为逆时针方向,大小为 |
D.方向为顺时针方向,大小为 |
如图所示,空间存在一有边界的条形匀强磁场区域,磁场方向与竖直平面(纸面)垂直,磁场边界的间距为L。一个质量为m、边长也为L的正方形导线框沿竖直方向运动,线框所在平面始终与磁场方向垂直,且线框上、下边始终与磁场的边界平行。t=0时刻导线框的上边恰好与磁场的下边界重合(图中位置I),导线框的速度为v0。经历一段时间后,当导线框的下边恰好与磁场的上边界重合时(图中位置Ⅱ),导线框的速度刚好为零.此后,导线框下落,经过一段时间回到初始位置I(不计空气阻力),则
A.上升过程中,导线框的加速度逐渐减小 |
B.上升过程克服重力做功的平均功率小于下降过程重力的平均功率 |
C.上升过程中线框产生的热量比下降过程中线框产生的热量的多 |
D.上升过程中合力做的功与下降过程中合力做的功相等 |
如图所示,abcd为单匝矩形线圈,边长ab=10cm,bc=20cm。该线圈的一半位于具有理想边界、磁感应强度为0.1T、宽为20cm的匀强磁场中,磁场方向与线圈平面垂直。若线圈绕通过ab边的轴以100p rad/s的角速度匀速旋转,当线圈由图示位置转过180°的过程中,感应电动势的平均值为 V;当线圈由图示位置转过90°时的瞬时感应电动势大小为 V。
如图所示,竖直悬挂的弹簧下端栓有导体棒ab,ab无限靠近竖直平行导轨的内侧、与导轨处于竖直向上的磁场中,导体棒MN平行导轨处于垂直导轨平面的磁场中,当MN以速度v向右匀速运动时,ab恰好静止,弹簧无形变,现使v减半仍沿原方向匀速运动,ab开始沿导轨下滑,磁场大小均为B,导轨宽均为L,导体棒ab、MN质量相同、电阻均为R,其他电阻不计,导体棒与导轨接触良好,弹簧始终在弹性范围内,最大静摩擦力等于滑动摩擦力,则
A.MN中电流方向从M到N |
B.ab受到的安培力垂直纸面向外 |
C.ab开始下滑直至速度首次达峰值的过程中,克服摩擦产生热量 |
D.ab速度首次达到峰值时,电路的电热功率为 |
如图,两条相距l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度打下B 1随时间t的变化关系为 ,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN(虚线)与导轨垂直,磁场的磁感应强度大小为B 0 , 方向也垂直于纸面向里。某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN,此后向右做匀速运动。金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计。求
(1)在 到 时间间隔内,流过电阻的电荷量的绝对值;
(2)在时刻 穿过回路的总磁通量和金属棒所受外加水平恒力的大小。
如图所示,宽度的足够长的U形金属框架水平放置,框架中连接电阻,框架处在竖直向上的匀强磁场中,磁感应强度,框架导轨上放一根质量为、电阻,的金属棒,棒与导轨间的动摩擦因数,现用功率恒定的牵引力使棒从静止开始沿导轨运动(棒始终与导轨接触良好且垂直),当整个回路产生热量时刚好获得稳定速度,此过程中,通过棒的电量(框架电阻不计,取)求:
(1)当导体棒的速度达到时,导体棒上两点电势的高低?导体棒两端的电压?导体棒的加速度?
(2)导体棒稳定的速度?
(3)导体棒从静止到刚好获得稳定速度所用的时间?
如图所示,在竖直方向上有四条间距均为L=0.5 m的水平虚线L1、L2、L3、L4,在L1L2之间、L3L4之间存在匀强磁场,大小均为1 T,方向垂直于纸面向里。现有一矩形线圈abcd,长度ad=3 L,宽度cd=L,质量为0.1 kg,电阻为1Ω,将其从图示位置静止释放(cd边与L1重合),cd边经过磁场边界线L3时恰好做匀速直线运动,整个运动过程中线圈平面始终处于竖直方向, cd边水平。(g="10" m/s2)则( )
A.cd边经过磁场边界线L3时通过线圈的电荷量为0. 5 C |
B.cd边经过磁场边界线L3时的速度大小为4 m/s |
C.cd边经过磁场边界线L2和 L4的时间间隔为0.25s |
D.线圈从开始运动到cd边经过磁场边界线L4过程,线圈产生的热量为0.7J |
粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如下图所示,则在移出过程中线框的一边A.b两点间电势差绝对值最大的是( )
如图所示,在磁感应强度B=0.2T的水平匀强磁场中,有一边长为L=10cm,匝数N=100匝,电阻r=1Ω的正方形线圈绕垂直于磁感线的轴匀速转动,转速r/s,有一电阻R=9Ω,通过电刷与两滑环接触,R两端接有一理想电压表,求:
(1)若从线圈通过中性面时开始计时,写出电动势瞬时值表达式;
(2)求从中性面开始转过T时的感应电动势与电压表的示数;
(3在1分钟内外力驱动线圈转动所作的功;
如图所示,边长为L、匝数为N,电阻不计的正方形线圈abcd在磁感应强度为B的匀强磁场中绕转轴OO′转动,轴OO′垂直于磁感线,在线圈外接一含有理想变压器的电路,变压器原、副线圈的匝数分别为n1和n2.保持线圈以恒定角速度ω转动,下列判断正确的是( )
A.在图示位置时线框中磁通量为零,感应电动势最大 |
B.当可变电阻R的滑片P向上滑动时,电压表V2的示数变大 |
C.电压表V1示数等于NBωL2 |
D.变压器的输入与输出功率之比为1∶1 |
(12分)如图所示,两足够长的平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面的夹角=30°,导轨电阻不计,磁感应强度为B的匀强磁场垂直于导轨平面向上。长为L的金属棒垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为、电阻为R。两金属导轨的上端连接一个灯泡,灯泡的电阻也为R。现闭合开关K ,给金属棒施加一个方向垂直于杆且平行于导轨平面向上的、大小为F=2mg的恒力,使金属棒由静止开始运动,当金属棒达到最大速度时,灯泡恰能达到它的额定功率。重力加速度为g,求:
(1)金属棒能达到的最大速度vm;
(2)灯泡的额定功率PL;
(3)若金属棒上滑距离为s时速度恰达到最大,求金属棒由静止开始上滑2s的过程中,金属棒上产生的电热Q1。