已知长为L的直导线在磁场中受到的安培力为F=IBL,其中B为磁感应强度。试由此公式导出单个运动电荷在磁场中所受的洛仑兹力F洛的表达式,要注明每个字母所代表的物理量。
根据科普资料介绍,受控核聚变装置中有极高的温度,因而带电粒子将没有通常意义上的”容器”可装,而是借助磁场能约束带电粒子运动这一理论,从而使高速运动的带电粒子束缚在某一磁场区域内,那么,该磁场就成了某种意义上的容器了。
(1)实践表明,如果氦核在磁场区域内沿垂直于磁场方向运动,速度大小V与它在磁场中运动的轨道半径R有关,根据我们已学过的知识,试推导出V与R的关系式。(已知氦核的荷质比为q/m,磁场的磁感强度为B,氦核重力不计)
(2)对于上面的”容器”,我们现按下面的简化条件来讨论:如图所示是一个截面为内径R1,外径R2的环状区域,区域内有垂直于截面的匀强磁场,已知氦核的荷质比为q/m,磁场的磁感强度为B,若氦核平行于截面从A点以相同速率沿各个方向射入磁场都不能穿出磁场外边界,求氦核的最大速度。
中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,届时发射一颗运动半径为r的绕月卫星,登月着陆器从绕月卫星出发,沿椭圆轨道降落到月球的表面上,与月球表面经多次碰撞和弹跳才停下来。假设着陆器第一次弹起的最大高度为h,水平速度为v1,第二次着陆时速度为v2。求月球的质量。(万有引力常量为G)
24、.在真空中,半径为R的圆形区域内存在垂直纸面向外的匀强磁场,磁感应强度大小为B,在此区域外围空间有垂直纸面向内的大小也为B的磁场,一个带电粒子从边界上的P点沿半径向外,以速度v0进入外围磁场,已知带电粒子质量m=2×10-10kg,带电量q= +5×10-6C,不计重力,磁感应强度B=1T,粒子运动速度v0=5×103m/s,图形区域半径r=0.2m,求粒子第一次回到P点所需时间。
如图所示,、为一对固定的平行金属导轨,其电阻忽略不计。导轨左端连接一定值电阻,右端通过导线连接着一对固定的平行金属板,金属板板长和板间距离均为,且金属板间距离恰好是两导轨间距离的倍。导轨和金属板间存在方向垂直纸面向里,磁感应强度大小未知的匀强磁场。金属板左端正中间处有一电子源,不断地沿水平向右方向发射速率恒为的电子,电子恰好沿下极板右端飞出。为保证电子沿水平方向运动,可在导轨上加一轻质金属杆,其阻值为,使其在金属导轨上无摩擦的左右滑动。已知电子的质量为,电量为,不考虑电子的重力及电子间的的相互作用。
(1)为使电子沿水平方向运动,请定性描述金属杆的运动情况;
(2)使金属杆ab保持上述的速度运动,则作用在杆上的拉力做功的功率为多大?
如图所示,一固定绝缘且足够长的斜面倾角为37°,与斜面同一空间足够大的范围内存在水平方向的匀强电场,场强大小与方向均未知。一质量为m=1kg,带电量q=0.5C的带电滑块从斜面顶端由静止出发,经过时间t=2s,发生位移s=15m,已知滑块与斜面间的动摩擦因素μ=0.5。在第2s末,加上方向垂直于纸面向里,磁感应强度大小为B=0.4T的匀强磁场,滑块在斜面上继续滑行L=10m的距离后恰好离开斜面。(重力加速度g=10m/s2)
(1)试说明该带电滑块所带电荷的性质及滑块在斜面上的运动情况,要求说明理由;
(2)计算说明匀强电场的场强大小和方向。
(3)滑块在斜面上运动过程中,系统产生的内能。