如图所示,AB、CD两直线间的区域相距为2L,其间存在着两个大小不同、方向相反的有界匀强电场,其中PT上方电场的场强E1方向竖直向下,PT下方电场的场强E2方向竖直向上,在电场左边界AB上宽为L的PQ区域内,连续分布着电荷量为+q、质量为m的粒子。从某时刻起由Q到P点间的带电粒子依次以相同的初速度V0沿水平方向垂直射入匀强电场E2中,若从Q点射入的粒子,通过PT上的某点R进入匀强电场E1后从CD边上的M点水平射出,其轨迹如图,若MT两点的距离为L/2,不计粒子的重力及它们间的相互作用。试求:
(1)电场强度E1与E2;
(2)在PQ间还有许多水平射入电场的粒子通过电场后也能垂直CD边水平射出,这些入射点到P 点的距离有什么规律?
(3)有一边长为a、由光滑绝缘壁围成的正三角形容器,在其边界正中央开有一小孔S,将其无缝隙的置于CD右侧,若从Q点射入的粒子经AB、CD间的电场从S孔水平射入容器中,欲使粒子在容器中与器壁多次垂直碰撞后仍能从S孔射出(粒子与绝缘壁碰撞时无能量和电荷量损失),并返回Q点,需在容器中加上一个如图所示的匀强磁场,粒子运动的半径小于a,则磁感应强度B的大小应满足什么条件?
如图所示直角坐标系中,矩形区域内有垂直于纸面向外的匀强磁场,磁感应强度大小为B=5.0×10-2T;第一象限内有沿方向的匀强电场,电场强度大小为N/C。已知矩形区域边长为0.60m,ab边长为0.20m。在边中点处有一放射源,某时刻,放射源沿纸面向磁场中各方向均匀地辐射出速率均为m/s的某种带正电粒子,带电粒子质量kg,电荷量C,不计粒子重力,求:(计算结果保留两位有效数字)
(1)粒子在磁场中运动的半径;
(2)从轴上射出的粒子中,在磁场中运动的最短路程为多少?
(3)放射源沿-方向射出的粒子,从射出到从轴离开所用的时间。
如图所示,第二、三象限存在足够大的匀强电场,电场强度为E,方向平行于纸面向上,一个质量为m,电量为q的正粒子,在x轴上M点(-4r,0)处以某一水平速度释放,粒子经过y轴上N点(0,2r)进入第一象限,第一象限存在一个足够大的匀强磁场,其磁感应强度B=2,方向垂直于纸面向外,第四象限存在另一个足够大的匀强磁场,其磁感应强度B=2,方向垂直于纸面向里,不计粒子重力,r为坐标轴每个小格的标度,试求:
(1)粒子初速度v0;
(2)粒子第1次穿过x轴时的速度大小和方向;
(3)画出粒子在磁场中运动轨迹并求出粒子第n次穿过x轴时的位置坐标。
如图所示,水平虚线x下方区域分布着方向水平、垂直纸面向里、磁感应强度为B的匀强磁场,整个空间存在匀强电场(图中未画出)。质量为m,电荷量为+q的小球P静止于虚线x上方A点,在某一瞬间受到方向竖直向下、大小为I的冲量作用而做匀速直线运动。在A点右下方的磁场中有定点O,长为l的绝缘轻绳一端固定于O点,另一端连接不带电的质量同为m的小球Q,自然下垂。保持轻绳伸直,向右拉起Q,直到绳与竖直方向有一小于50的夹角,在P开始运动的同时自由释放Q,Q到达O点正下方W点时速率为v0。P、Q两小球在W点发生正碰,碰后电场、磁场消失,两小球粘在一起运动。P、Q两小球均视为质点,P小球的电荷量保持不变,绳不可伸长,不计空气阻力,重力加速度为g。
(1)求匀强电场场强E的大小和P进入磁场时的速率v;
(2)若绳能承受的最大拉力为F,要使绳不断,F至少为多大?
(3)若P与Q在W点相向(速度方向相反)碰撞时,求A点距虚线X的距离s。、
如图,在的区域有垂直于纸面向里的匀强磁场,磁感应强度的大小为B,在x>a的区域有垂直于纸面向外的匀强磁场,磁感应强度的大小也为B。质量为m、电荷量为q(q>0)的粒子沿x轴从原点O射入磁场。(粒子重力忽略不计)若粒子以的速度射入磁场,求其轨迹与x轴交点的横坐标?
如图所示,在xoy平面内,有一个圆形区域的直径AB 与x轴重合,圆心O′的坐标为(2a,0),其半径为a,该区域内无磁场. 在y轴和直线x=3a之间的其他区域内存在垂直纸面向外的匀强磁场,磁感应强度大小为B.一质量为m、电荷量为q的带正电的粒子从y轴上某点射入磁场.不计粒子重力.
(1)若粒子的初速度方向与y轴正向夹角为60°,且粒子不经过圆形区域就能到达B点,求粒子的初速度大小v1;
(2)若粒子的初速度方向与y轴正向夹角为60°,在磁场中运动的时间为且粒子也能到达B点,求粒子的初速度大小v2;
(3)若粒子的初速度方向与y轴垂直,且粒子从O′点第一次经过x轴,求粒子的最小初速度vm.
在如图所示的直角坐标系第一象限与第三象限分布匀强磁场和匀强电场,磁感应强度为B。现在第三象限中从P点以初速度v0沿x轴正方向发射质量为m,带+q的离子,离子经电场后恰从坐标原点O射入磁场,离子重力不计。
(1)求电场强度为E的大小
(2)求离子进入磁场的速度
(3)求离子在磁场中运动的时间及磁场出射点距O点的距离d。
如图所示,在xOy平面内y>0的区域内分布着沿y轴负方向的匀强电场,在x轴下方有一边界平行的条形匀强磁场区域,匀强磁场的磁感应强度大小为B,方向垂直于xOy平面向外,磁场区域的上边界与x轴重合。质量为m、电荷量为q的带正电的粒子从y轴上的P点以初速度v0沿x轴正向射出,然后从x轴上的Q点射入磁场区域。已知OP=h,OQ=,粒子的重力忽略不计。求:
(1)粒子从x轴上的Q点射入磁场区域时的速度大小v ;
(2)若粒子未从磁场区域的下边界穿出,求条形磁场区域的最小宽度d0 ;
(3)若粒子恰好没从磁场区域的下边界穿出,求粒子从P点射入电场区域到经过磁场区域后返回x轴的时间t。
如图所示,在xOy直角坐标系中,第Ⅰ象限内分布着方向垂直纸面向里的匀强磁场,第Ⅱ象限内分布着方向沿y轴负方向的匀强电场.初速度为零、带电荷量为q、质量为m的粒子经过电压为U的电场加速后,从x轴上的A点垂直x轴进入磁场区域,经磁场偏转后过y轴上的P点且垂直y轴进入电场区域,在电场中偏转并击中x轴上的C点.已知OA=OC=d. (粒子的重力不计).求
(1)离子进入磁场时的速度大小;
(2)电场强度E和磁感应强度B的大小.
如图所示,直线MN上方存在垂直纸面向里、磁感应强度大小为B的匀强磁场,现有一质量为m、带电荷量为+q的粒子在纸面内以某一速度从A点射入,其方向与MN成30°角,A点到MN的垂直距离为d,带电粒子重力不计.若粒子进入磁场后再次从磁场中射出时恰好能回到A点,求:粒子在磁场中运动的时间t和粒子运动速度的大小v?
如图所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负离子(质量相同,电荷量相同,重力不计)分别以相同速度沿与x轴成30°角从原点射入磁场,则正、负电子在磁场中运动时间之比为
如图所示为圆柱形区域的横截面,在没有磁场的情况下,带电粒子(不计重力)以某一初速度沿截面直径方向入射,穿过此区域的时间为t ,在该区域加沿轴线垂直纸面向外方向的匀磁强场,磁感应强度大小为B,带电粒子仍以同一初速度沿截面直径入射并沿某一直径方向飞出此区域时,速度方向偏转角为600,如图所示。根据上述条件可求下列哪几个物理量 ( )
① 带电粒子的比荷 ② 带电粒子在磁场中运动的周期
③ 带电粒子在磁场中运动的半径 ④ 带电粒子的初速度
A.①② | B.①③ | C.②③ | D.③④ |
如图所示,直角三角形OAC(α=30°)区域内有B=0.5 T的匀强磁场,方向如图所示.两平行极板M,N接在电压为U的直流电源上,左板为高电势.一带正电的粒子从靠近M板由静止开始加速,从N板的小孔射出电场后,垂直OA的方向从P点进入磁场中.带电粒子的比荷为=105C/kg,OP间距离为L=0.3 m.全过程不计粒子所受的重力,则:
(1)若加速电压U=120 V,通过计算说明粒子从三角形OAC的哪一边离开磁场?
(2)求粒子分别从OA.OC边离开磁场时粒子在磁场中运动的时间.
如图所示,在无限长的竖直边界AC和DE间,上、下部分分别充满方向垂直于拟〕EC平面向外的匀强磁场,上部分区域的磁感应强度大小为B0,OF为上、下磁场的水平分界线.质量为m、带电荷量为十q的粒子从AC边界上与O点相距为a的P点垂直于AC边界射人上方磁场区域,经OF上的Q点第一次进人下方磁场区域,Q与O点的距离为3a.不考虑粒子重力.
(1)求粒子射人时的速度大小;
(2)要使粒子不从AC边界飞出,求下方磁场区域的磁感应强度应满足的条件;
(3)若下方区域的磁感应强度B=3B。,粒子最终垂直DE边界飞出,求边界DE与AC间距离的可能值.
如图所示,在平面直角坐标系xOy中,第Ⅰ象限内有沿y轴负向的匀强电场,电场强度的大小为E,第Ⅳ象限内有垂直纸面向外的匀强电场。在y轴上的P点沿x轴正向发射质量为m、电荷量为q的带正电粒子,粒子从x轴上Q点射入磁场。已知Q点坐标为(L,0),不计粒子的重力及相互作用。
(1)若粒子在Q点的速度方向与x轴成30°角,求P点的坐标及粒子在Q点的速度大小;
(2)若从y轴的正半轴上各点处均向x轴正向发射与(1)中相同的粒子,结果这些粒子均能从x轴上的Q点进入磁场,并且到Q点速度最小的粒子A,经磁场偏转后,恰好垂直y轴射出磁场,求匀强磁场的磁感应强度大小及粒子A在磁场中运动时间。