如图所示,在空间中存在垂直纸面向里的磁感应强度为B匀强磁场,其边界AB、CD的宽度为d,在左边界的Q点处有一质量为m,带电量为负q的粒子沿与左边界成30o的方向射入磁场,粒子重力不计.求:
(1)带电粒子能从AB边界飞出的最大速度?
(2)若带电粒子能AB边界飞出磁场,粒子在磁场中运动的时间?
在甲图中,带正电粒子从静止开始经过电势差为U的电场加速后,从G点垂直于MN进入偏转磁场。该偏转磁场是一个以直线MN为上边界、方向垂直于纸面向外的匀强磁场,磁场的磁感应强度为B,带电粒子经偏转磁场后,最终到达照相底片上的H点,如图甲所示,测得G、H间的距离为d,粒子的重力可忽略不计。
(1)设粒子的电荷量为q,质量为m。求该粒子的比荷;
(2)若偏转磁场的区域为圆形,且与MN相切于G点,如图乙所示,其它条件不变,要保证上述粒子从G点垂直于MN进入偏转磁场后不能打到MN边界上(MN足够长),求磁场区域的半径应满足的条件。
如图13所示,质量为0.1g的小球,带有5×10-4C的正电荷,套在一根与水平成37º的细长绝缘杆上,球与杆间的动摩擦因数为0.5,杆所在空间有磁感应强度为0.4T的匀强磁场,小球由静止开始下滑的最大加速度为多少m/s2 ? 最大速率为多少? (g = 10m/s2)
如图所示,真空中有以O′为圆心,r为半径的圆柱形匀强磁场区域,圆的最下端与x轴相切于直角坐标原点O,圆的右端与平行于y轴的虚线MN相切,磁感应强度为B,方向垂直纸面向外,在虚线MN右侧x轴上方足够大的范围内有方向竖直向下、场强大小为E的匀强电场。现从坐标原点O向纸面不同方向发射速率相同的质子,质子在磁场中做匀速圆周运动的半径也为r,已知质子的电荷量为e,质量为m,不计质子的重力、质子对电磁场的影响及质子间的相互作用力。求:
(1)质子进入磁场时的速度大小
(2)沿y轴正方向射入磁场的质子到达x轴所需的时间。
在图所示的坐标系中,x轴水平,y轴垂直,x轴上方空间只存在重力场,第Ⅲ象限存在沿y轴正方向的匀强电场和垂直xy平面向里的匀强磁场,在第Ⅳ象限由沿x轴负方向的匀强电场,场强大小与第Ⅲ象限存在的电场的场强大小相等。一质量为m,带电荷量大小为q的质点a,从y轴上y=h处的P1点以一定的水平速度沿x轴负方向抛出,它经过x= -2h处的P2点进入第Ⅲ ]象限,恰好做匀速圆周运动,又经过y轴上的y= -2h的P3点进入第Ⅳ 象限,试求:
⑴质点到达P2点时速度的大小和方向;
⑵第Ⅲ象限中匀强电场的电场强度和匀强磁场的磁感应强度的大小;
⑶质点a进入第Ⅳ象限且速度减为零时的位置坐标
如图甲所示,两平行金属板A、B的板长L=0.2m,板间距d=0.2m,两金属板间加如图乙所示的交变电压,并在两板间形成交变的匀强电场,忽略其边缘效应。在金属板右侧有一方向垂直于纸面向里的匀强磁场,其左右宽度D=0.4m,上下范围足够大,边界MN和PQ均与金属板垂直,匀强磁场的磁感应强度B=1×10-2 T.现从t=0开始,从两极板左侧的中点O处以每秒钟1000个的数量均匀连续地释放出某种正电荷粒子,这些粒子均以v0=2×105 m/s的速度沿两板间的中线OO′连续进入电场,已知带电粒子的比荷=1×108C/kg,粒子的重力和粒子间的相互作用都忽略不计,在粒子通过电场区域的极短时间内极板间的电压可以看作不变.求:
(1)t=0时刻进入的粒子,经边界MN射入磁场和射出磁场时两点间的距离;
(2)在0~1s内有多少个带电粒子能进入磁场;
(3)何时由O点进入的带电粒子在磁场中运动的时间最长?
如图所示,在xoy平面直角坐标系第一象限内分布有垂直向外的匀强磁场,磁感应强度大小B=2.5×10-2T,在第二象限紧贴y轴和x轴放置一对平行金属板MN(中心轴线过y轴),极板间距d=0.4m,极板与左侧电路相连接。通过移动滑动头P可以改变极板MN间的电压。a、b为滑动变阻器的最下端和最上端(滑动变阻器的阻值分布均匀),a、b两端所加电压。在MN中心轴线上距y轴距离为L=0.4m处有一粒子源S,沿x轴正方向连续射出比荷为,速度为vo=2.0×104m/s带正电的粒子,粒子经过y轴进入磁场后从x轴射出磁场(忽略粒子的重力和粒子之间的相互作用)。
(1)当滑动头P在ab正中间时,求粒子射入磁场时速度的大小。
(2)当滑动头P在ab间某位置时,粒子射出极板的速度偏转角为,试写出粒子在磁场中运动的时间与的函数关系,并由此计算粒子在磁场中运动的最长时间。
如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为的匀强磁场,在此区域内,沿水平面固定一半径为的圆环形光滑细玻璃管,环心在区域中心。一质量为、带电量为(>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。已知磁感应强度大小随时间的变化关系如图乙所示,其中。设小球在运动过程中电量保持不变,对原磁场的影响可忽略。
(1)在=0到这段时间内,小球不受细管侧壁的作用力,求小球的速度大小;
(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等。试求到这段时间内:
①细管内涡旋电场的场强大小;
②电场力对小球做的功。
如图所示,在y轴右侧平面内存在垂直xoy平面向里的匀强磁场,磁感应强度B=0.5T。坐标原点O有一放射源,可以连续不断地向y轴右侧面内沿各个方向放射出比荷=4×106C/kg的正离子,这些正离子的速率分别在0到2×106m/s的范围内,不计离子的重力及它们之间的相互作用。
(1)求离子打到y轴上的范围
(2)若在某时刻沿+x方向放射出各种速率的离子,求经过t=×10-7s时这些离子所在位置构成的曲线方程。
(3)若从某时刻开始向y轴右侧各个方向放射出各种速率的离子,求经过t=×10-7s时已进入磁场的离子可能出现的区域面积。
如下图所示,带电平行金属板PQ和MN之间距离为d;两金属板之间有垂直纸面向里的匀强磁场,磁感应强度大小为B。建立如图所示的坐标系,x轴平行于金属板,且与金属板中心线重合,y轴垂直于金属板。区域I的左边界是y轴,右边界与区域II的左边界重合,且与y轴平行;区域II的左、右边界平行。在区域I和区域II内分别存在匀强磁场,磁感应强度大小均为B,区域I内的磁场垂直于Oxy平面向外,区域II内的磁场垂直于Oxy平面向里。一电子沿着x轴正向以速度v0射入平行板之间,在平行板间恰好沿着x轴正向做直线运动,并先后通过区域I和II。已知电子电量为e,质量为m,区域I和区域II沿x轴方向宽度均为。不计电子重力。
(1)求两金属板之间电势差U;
(2)求电子从区域II右边界射出时,射出点的纵坐标y;
(3)撤除区域I中的磁场而在其中加上沿x轴正向匀强电场,使得该电子刚好不能从区域II的右边界飞出。求电子两次经过y轴的时间间隔t。
从粒子源不断发射相同的带电粒子,初速可忽略不计,这些粒子经电场加速后,从M孔以平行于MN方向进入一个边长为d的正方形的磁场区域MNQP,如图14所示,磁感应强度大小为B,方向垂直纸面向外,其中PQ的中点S开有小孔,外侧紧贴PQ放置一块荧光屏。当把加速电压调节为U时,这些粒子刚好经过孔S打在荧光屏上,不计粒子的重力和粒子间的相互作用。请说明粒子的电性并求出粒子的比荷()
如图,一匀强磁场磁感应强度为B,方向垂直纸面向里,其边界是半径为R的圆.MN为圆的一直径.在M点有一粒子源可以在圆平面内向不同方向发射质量m、电量-q速度为v的 粒子,粒子重力不计,其运动轨迹半径大于R.
(1)求粒子在圆形磁场中运动的最长时间(答案中可包含某角度,需注明该角度的正弦或余弦 值);
(2)试证明:若粒子沿半径方向入射,则粒子一定沿半径方向射出磁场.
如图,光滑的圆槽固定不动,处于水平向里的匀强磁场中,一带正电小球从与圆心等高处由静止沿圆槽下滑,到达最低点。已知小球质量m=0.1g,电量q=1.0×10-6C 圆槽半径 R=1.25m,磁感应强度B=2×102T(g=10m/s2)
求:
小球运动到最低点时的速度大小?
小球在最低点圆槽对小球的支持力?
如图所示,一个电子(电量为e)以速度v0垂直射入磁感应强度为B,宽为d的匀强磁场中,穿出磁场的速度方向与电子原来的入射方向的夹角为30°,(电子重力忽略不计)
求:
电子的质量是多少?
穿过磁场的时间是多少?
若改变初速度大小,使电子刚好不能从A边射出,则此时速度v是多少?
如图所示,半径为R的半圆形槽放在粗糙的水平地面上,槽内部光滑,其质量为M。匀强磁场与槽面垂直向内,将质量为m的带电小球自槽口A处由静止释放,小球到达槽最低点C时,恰好对槽无压力.整个过程中M对地始终静止,问:
小球第一次运动到C点时,速度大小为多少?
小球在以后运动过程中,半圆形槽对地面的最大压力是多少?