高中物理

如下图所示,在空间有一直角坐标系xOy,直线OP与x轴正方向的夹角为30°,第一象限内有两个方向都垂直纸面向外的匀强磁场区域Ⅰ和Ⅱ,直线OP是它们的理想边界,OP上方区域Ⅰ中磁场的磁感应强度为B。一质量为m、电荷量为q的质子(不计重力,不计质子对磁场的影响)以速度v从O点沿与OP成30°角的方向垂直磁场进入区域Ⅰ,质子先后通过磁场区域Ⅰ和Ⅱ后,恰好垂直打在x轴上的Q点(图中未画出)。试求:

(1)区域Ⅱ中磁场的磁感应强度大小;
(2)Q点到O点的距离。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,虚线框abcd内为边长均为L的正方形匀强电场和匀强磁场区域,电场强度的大小为E,方向向下,磁感应强度为B,方向垂直纸面向外,PQ为其分界线,现有一群质量为m,电荷量为e的电子(重力不计)从PQ中点与PQ成30°角以不同的初速度射入磁场,求:

(1)能从PQ边离开磁场的电子在磁场运动的时间.
(2)若要电子在磁场运动时间最长,其初速v应满足的条件?
(3)若电子在满足(2)中的条件下且以最大速度进入磁场,最终从电场aP边界飞出虚线框所具有的动能EK

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直,一质量为m,电荷量为-q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场,粒子在磁场中的运动轨迹y轴交与M点,已知。不计重力,求:

(1)M点与坐标原点O间的距;
(2)粒子从P点运动到M点所用的时间。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,固定在水平面上的斜面倾角为α,磁感应强度为B的匀强磁场垂直于斜面向上。将质量为m、带电量为+q的滑块轻轻放置在斜面上,求滑块稳定滑动时速度的大小和方向(与图中虚线之间的夹角)(斜面与滑块之间的动摩擦因数

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,左侧装置内存在着匀强磁场和方向竖直向下的匀强电场,装置上下两极板间电势差为U,间距为L,右侧为“梯形”匀强磁场区域ACDH,其中,AH//CD, 。一束电荷量大小为q、质量不等的带电粒子(不计重力、可视为质点),从狭缝S1射入左侧装置中恰能沿水平直线运动并从狭缝S2射出,接着粒子垂直于AH、由AH的中点M射入“梯形”区域,最后全部从边界AC射出。若两个区域的磁场方向均水平(垂直于纸面向里)、磁感应强度大小均为B,“梯形”宽度,忽略电场、磁场的边缘效应及粒子间的相互作用。

(1)判定这束粒子所带电荷的种类,并求出粒子速度的大小;
(2)求出这束粒子可能的质量最小值和最大值;
(3)求出(2)问中偏转角度最大的粒子在“梯形”区域中运动的时间。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

质量为0.1 kg的小物块,带有0.5 C的电荷量,放在倾角为30°的绝缘光滑斜面上,整个斜面置于0.5 T的匀强磁场中,磁场方向如图所示,物块由静止开始下滑,滑到某一位置时,物块开始离开斜面(设斜面足够长,g=10 m/s2)问:

(1)物块带电性质?
(2)物块离开斜面时的速度为多少?
(3)物块在斜面上滑行的最大距离是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

电子质量为m、电荷量为q,以速度v0与x轴成600角射入磁感应强度为B的匀强磁场中,最后落在x轴上的P点,如图所示,求:

(1)粒子运动的半径R与周期T
(2)OP的长度;
(3)电子从由O点射入到落在P点所需的时间t.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

直角坐标系xOy中,有一半径为R的圆形匀强磁场区域,磁感应强度为B,磁场方向垂直xOy平面指向纸面内,该区域的圆心坐标为(R,0),有一个质量为m、带电荷量为-q的离子,以某一速度进入该磁场,不计重力;

(1)若离子从O点沿x轴正方向射入,出射时相对入射方向改变了90°角,求离子速度大小;
(2)若离子从点(0,R/2)沿x轴正方向射入磁场,离子从射入磁场到射出磁场通过了该磁场的最大距离,求离子在磁场区域经历的时间。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,质量为m,电荷量为q的粒子,以初速度v垂直进入宽度为L的匀强磁场中,粒子只受洛伦兹力作用,离开磁场的速度方向偏离入射方向 θ=" π/6" 。求:

(1)带电粒子在磁场中做匀速圆周运动的轨道半径r 。
(2)磁感应强度B的大小。
(3)带电粒子在磁场中的运动时间t .

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在某空间存在着水平向右的匀强电场E和垂直于纸面向里的匀强磁场B,如图所示,一段光滑且绝缘的圆弧轨道AC固定在纸面内,其圆心为O点,半径,OA连线在竖直方向上,AC弧对应的圆心角。今有一质量、电荷量的带电小球(可视为质点),以的初速度沿水平方向从A点射入圆弧轨道内,一段时间后从C点离开,小球离开C点后做匀速直线运动。已知重力加速度,不计空气阻力,求:

(1)匀强电场的场强E;
(2)小球刚离开C点时的速度大小;
(3)小球刚射入圆弧轨道时,轨道对小球的瞬间支持力

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,AB、CD两直线间的区域相距为2L,其间存在着两个大小不同、方向相反的有界匀强电场,其中PT上方电场的场强E1方向竖直向下,PT下方电场的场强E2方向竖直向上,在电场左边界AB上宽为L的PQ区域内,连续分布着电荷量为+q、质量为m的粒子。从某时刻起由Q到P点间的带电粒子依次以相同的初速度V0沿水平方向垂直射入匀强电场E2中,若从Q点射入的粒子,通过PT上的某点R进入匀强电场E1后从CD边上的M点水平射出,其轨迹如图,若MT两点的距离为L/2,不计粒子的重力及它们间的相互作用。试求:

(1)电场强度E1与E2
(2)在PQ间还有许多水平射入电场的粒子通过电场后也能垂直CD边水平射出,这些入射点到P 点的距离有什么规律?
(3)有一边长为a、由光滑绝缘壁围成的正三角形容器,在其边界正中央开有一小孔S,将其无缝隙的置于CD右侧,若从Q点射入的粒子经AB、CD间的电场从S孔水平射入容器中,欲使粒子在容器中与器壁多次垂直碰撞后仍能从S孔射出(粒子与绝缘壁碰撞时无能量和电荷量损失),并返回Q点,需在容器中加上一个如图所示的匀强磁场,粒子运动的半径小于a,则磁感应强度B的大小应满足什么条件?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,第二、三象限存在足够大的匀强电场,电场强度为E,方向平行于纸面向上,一个质量为m,电量为q的正粒子,在x轴上M点(-4r,0)处以某一水平速度释放,粒子经过y轴上N点(0,2r)进入第一象限,第一象限存在一个足够大的匀强磁场,其磁感应强度B=2,方向垂直于纸面向外,第四象限存在另一个足够大的匀强磁场,其磁感应强度B=2,方向垂直于纸面向里,不计粒子重力,r为坐标轴每个小格的标度,试求:

(1)粒子初速度v0
(2)粒子第1次穿过x轴时的速度大小和方向;
(3)画出粒子在磁场中运动轨迹并求出粒子第n次穿过x轴时的位置坐标。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示为圆柱形区域的横截面,在没有磁场的情况下,带电粒子(不计重力)以某一初速度沿截面直径方向入射,穿过此区域的时间为t ,在该区域加沿轴线垂直纸面向外方向的匀磁强场,磁感应强度大小为B,带电粒子仍以同一初速度沿截面直径入射并沿某一直径方向飞出此区域时,速度方向偏转角为600,如图所示。根据上述条件可求下列哪几个物理量 (  )

① 带电粒子的比荷   ② 带电粒子在磁场中运动的周期
③ 带电粒子在磁场中运动的半径   ④ 带电粒子的初速度

A.①② B.①③ C.②③ D.③④
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,直角三角形OAC(α=30°)区域内有B=0.5 T的匀强磁场,方向如图所示.两平行极板M,N接在电压为U的直流电源上,左板为高电势.一带正电的粒子从靠近M板由静止开始加速,从N板的小孔射出电场后,垂直OA的方向从P点进入磁场中.带电粒子的比荷为=105C/kg,OP间距离为L=0.3 m.全过程不计粒子所受的重力,则:

(1)若加速电压U=120 V,通过计算说明粒子从三角形OAC的哪一边离开磁场?
(2)求粒子分别从OA.OC边离开磁场时粒子在磁场中运动的时间.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在无限长的竖直边界AC和DE间,上、下部分分别充满方向垂直于拟〕EC平面向外的匀强磁场,上部分区域的磁感应强度大小为B0,OF为上、下磁场的水平分界线.质量为m、带电荷量为十q的粒子从AC边界上与O点相距为a的P点垂直于AC边界射人上方磁场区域,经OF上的Q点第一次进人下方磁场区域,Q与O点的距离为3a.不考虑粒子重力.

(1)求粒子射人时的速度大小;
(2)要使粒子不从AC边界飞出,求下方磁场区域的磁感应强度应满足的条件;
(3)若下方区域的磁感应强度B=3B。,粒子最终垂直DE边界飞出,求边界DE与AC间距离的可能值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中物理判断洛伦兹力的方向计算题