质量为0.1 kg的小物块,带有0.5 C的电荷量,放在倾角为30°的绝缘光滑斜面上,整个斜面置于0.5 T的匀强磁场中,磁场方向如图所示,物块由静止开始下滑,滑到某一位置时,物块开始离开斜面(设斜面足够长,g=10 m/s2)问:(1)物块带电性质?(2)物块离开斜面时的速度为多少?(3)物块在斜面上滑行的最大距离是多少?
如图所示,间距为、半径为的内壁光滑的圆弧固定轨道,右端通过导线接有阻值为的电阻,圆弧轨道处于竖直向上的匀强磁场中,磁场的磁感应强度为。质量为、电阻为、长度也为的金属棒,从与圆心等高的处由静止开始下滑,到达底端时,对轨道的压力恰好等于金属棒的重力2倍,不计导轨和导线的电阻,空气阻力忽略不计,重力加速度为。求: (1)金属棒到达底端时,电阻两端的电压多大; (2)金属棒从处由静止开始下滑,到达底端的过程中,通过电阻的电量; (3)用外力将金属棒以恒定的速率从轨道的低端拉回与圆心等高的处的过程中,电阻产生的热量。
如图甲所示,固定在绝缘水平地面上的平行金属导轨间距为,左端用导线相连。质量为,电阻为的金属棒垂直导轨静止在导轨平面上,金属棒与导轨左端的距离,金属棒与导轨间的动摩擦因数均为,导与线导轨的电阻均不计。现将整个装置置于垂直于轨道平面竖直向上的磁场中,磁感应强度随时间的变化关系如图乙所示。设金属棒与导轨间的最大静摩擦力等于滑动摩擦力,忽略金属棒与导轨上电流之间的相互作用,。求: (1)金属棒未出现滑动之前,通过金属棒中电流的大小和方向; (2)从时刻开始到金属棒刚要发生滑动的过程中,金属棒产生的热量。
质量为的物块以速度沿粗糙水平面滑向静止在水平面上质量为的物块,物块和物块碰撞时间极短,碰后两物块粘在一起。已知物块和物块均可视为质点,两物块间的距离为,两物块与水平面间的动摩擦因数均为,重力加速度。求: (1)物块和物块碰撞前的瞬间,物块的速度大小; (2)物块和物块碰撞的过程中,物块对物块的冲量; (3)物块和物块碰撞的过程中,系统损失的机械能。
如图所示,传送带以一定速度沿水平方向匀速运动,将质量m=1.0kg的小物块轻轻放在传送带上的P点,物块运动到A点后被水平抛出,小物块恰好无碰撞地沿圆弧切线从B点进入竖直光滑圆弧轨道下滑.B、C为圆弧的两端点,其连线水平,轨道最低点为O,已知圆弧对应圆心角θ=106°,圆弧半径R=1.0m,A点距水平面的高度h=0.8m,小物块离开C点后恰好能无碰撞地沿固定斜面向上滑动,经过 0.8s小物块经过D点,已知小物块与斜面间的动摩擦因数μ=.(取sin53°=0.8,g=10m/s2)求: (1)小物块在B点的速度为速度大小; (2)小物块经过O点时,它对轨道的压力大小; (3)斜面上C、D间的距离.
风洞实验室能产生大小和方向均可改变的风力.如图所示,在风洞实验室中有足够大的光滑水平面,在水平面上建立xOy直角坐标系.质量m=0.5kg的小球以初速度v0=0.40m/s从O点沿x轴正方向运动,在0~2.0s内受到一个沿y轴正方向、大小F1=0.20N的风力作用;小球运动2.0s后风力方向变为y轴负方向、大小变为F2=0.10N(图中未画出).试求: (1)2.0s末小球在y方向的速度大小和2.0s内运动的位移大小; (2)风力F2作用多长时间,小球的速度变为与初速度相同。