如图所示,甲带正电,乙是不带电的绝缘物块,空间中有垂直纸面向里的匀强磁场。甲、乙叠放在一起,二者无相对滑动地沿粗糙的斜面,由静止开始加速下滑,在加速阶段甲、乙两物块间的弹力将 甲、乙两物块间的摩擦力将 乙物块与斜面间的摩擦力将 (填增大、减小或不变)
如图所示,左侧装置内存在着匀强磁场和方向竖直向下的匀强电场,装置上下两极板间电势差为U,间距为L,右侧为“梯形”匀强磁场区域ACDH,其中,AH//CD, 。一束电荷量大小为q、质量不等的带电粒子(不计重力、可视为质点),从狭缝S1射入左侧装置中恰能沿水平直线运动并从狭缝S2射出,接着粒子垂直于AH、由AH的中点M射入“梯形”区域,最后全部从边界AC射出。若两个区域的磁场方向均水平(垂直于纸面向里)、磁感应强度大小均为B,“梯形”宽度,忽略电场、磁场的边缘效应及粒子间的相互作用。
(1)判定这束粒子所带电荷的种类,并求出粒子速度的大小;
(2)求出这束粒子可能的质量最小值和最大值;
(3)求出(2)问中偏转角度最大的粒子在“梯形”区域中运动的时间。
2011年“3·15”到来之际,平板电视终于纳入“三包”当中,显示屏等关键零部件包修3年。如右图所示,电视机的显像管中,电子束的偏转是用磁偏转技术实现的。电子束经过加速电场后,进入一圆形匀强磁场区,磁场方向垂直于圆面。不加磁场时,电子束将通过磁场中心O点而打到屏幕上的中心M,加磁场后电子束偏转到P点外侧。现要使电子束偏转回到P点,可行的办法是 ( )
A.增大加速电压 |
B.增加偏转磁场的磁感应强度 |
C.将圆形磁场区域向屏幕靠近些 |
D.将圆形磁场的半径增大些 |
在研究某些物理问题时,有很多物理量难以直接测量,我们可以根据物理量之间的定量关系和各种效应,把不容易测量的物理量转化成易于测量的物理量。
(1)在利用如图1所示的装置探究影响电荷间相互作用力的因素时,我们可以通过绝缘细线与竖直方向的夹角来判断电荷之间相互作用力的大小。如果A、B两个带电体在同一水平面内,B的质量为m,细线与竖直方向夹角为θ,求A、B之间相互作用力的大小。
(2)金属导体板垂直置于匀强磁场中,当电流通过导体板时,外部磁场的洛伦兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧会出现多余的正电荷,从而形成电场,该电场对运动的电子有静电力的作用,当静电力与洛伦兹力达到平衡时,在导体板这两个表面之间就会形成稳定的电势差,这种现象称为霍尔效应。利用霍尔效应可以测量磁场的磁感应强度。
如图2所示,若磁场方向与金属导体板的前后表面垂直,通过所如图所示的电流I,可测得导体板上、下表面之间的电势差为U,且下表面电势高。已知导体板的长、宽、高分别为a、b、c,电子的电荷量为e,导体中单位体积内的自由电子数为n。求:
a.导体中电子定向运动的平均速率v;
b.磁感应强度B的大小和方向。
(供选学物理3-1的考生做)如图所示,质量为为m、电量为q的带电粒子,经电压为U加速,又经磁感应强度为B的匀强磁场后落到图中D点,求:
(1)带电粒子在A点垂直射入磁场区域时的速率v;
(2)A、D两点间的距离l。
如图所示,空间有一个范围足够大的匀强磁场,磁感应强度为B,一个质量为m、电荷量为+q的带电小圆环套在一根固定的绝缘竖直细杆上,杆足够长,环与杆的动摩擦因数为μ。现使圆环以初速度v0向上运动,经时间t圆环回到出发位置。不计空气阻力。已知重力加速度为g。求当圆环回到出发位置时速度v的大小。
如图所示,一段长方体形导电材料,左右两端面的边长都为a和b,内有带电荷量为q的某种自由运动电荷.导电材料置于方向垂直于其前表面向里的匀强磁场中,内部磁感应强度大小为B.当通以从左到右的稳恒电流I时,测得导电材料上下表面之间的电压为U,且上表面的电势比下表面的低.由此可得该导电材料单位体积内自由运动电荷数及自由运动电荷的正负分别为( )
A.,负 B.,正
C.,负 D.,正
如图所示,一根长度L的直导体棒中通过以大小为I的电流,静止放在导轨上,垂直于导体棒的匀强磁场的磁感应强度为B,B的方向与竖直方向成θ角,下列说法正确的是( )
A.导体棒受到磁场力大小为BLIsinθ |
B.导体棒对轨道压力大小为mg﹣BILsinθ |
C.导体棒受到导轨摩擦力为μ(mg﹣BILsinθ) |
D.一个带电粒子沿垂直于磁场方向射入匀强磁场中,由于使沿途空气电离而使粒子的动能逐渐减小 |
如图a、b、c为三个完全相同的带正电荷的油滴,在真空中从相同高度由静止下落到同一水平面,a下落中有水平匀强电场,b下落中有水平向里的匀强磁场,三油滴落地时间设为ta、tb、tc,落地时速度分别va、vb、vc,则( )
A.ta=tb=tc,va=vb=vc | B.ta=tb=tc,va>vb=vc |
C.tb>ta=tc,va=vb=vc | D.tb>ta=tc,va>vc=vb |
如图所示,有一垂直于纸面向外的有界匀强磁场,磁场的磁感应强度为B,其边界一边长L的正三角形(边界上有磁场)ABC为三角形的三个顶点,今有一质量为m、电荷量为+q的粒子(不计重力),以速度,从AB边上的某点P既垂直于AB边又垂直于磁场的方向射入,然后从BC边上某点Q射出,若从P点射入的粒子能从Q点射出,则
A. | B. | C. | D. |
电子质量为m、电荷量为q,以速度v0与x轴成600角射入磁感应强度为B的匀强磁场中,最后落在x轴上的P点,如图所示,求:
(1)粒子运动的半径R与周期T
(2)OP的长度;
(3)电子从由O点射入到落在P点所需的时间t.
设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一离子在静电力和洛伦兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略重力,下述说法中不正确的是( )
A.这离子必带正电荷 |
B.A点和B点位于同一高度 |
C.离子在C点时速度最大 |
D.离子到达B点后,将沿原曲线返回A点 |
如图所示,绝缘轨道由弧形轨道和半径为R=0.16m的圆形轨道、水平轨道连接而成,处于竖直面内的匀强电场中,PQ左右两侧电场方向相反,其中左侧方向竖直向下,场强大小均为103V/m,不计一切摩擦。质量为m=0.1kg的带正电小球可看作质点)从弧形轨道某处由静止释放,恰好能通过圆形轨道最高点,小球带电荷量q=1.0×10-3C,g取10m/s2。求:
(1)小球释放点的高度h
(2)若PQ右侧某一区域存在垂直纸面向里的匀强磁场(图中未画出),磁感应强度B=4×102T,小球通过圆形轨道后沿水平轨道运动到P点进入磁场,从竖直边界MN上的A点离开时速度方向与电场方向成30o,已知PQ、MN边界相距L=0.7m,求:
①小球从P到A经历的时间
②若满足条件的磁场区域为一矩形,求最小的矩形面积。
如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B.圆心O处有一放射源,放出粒子的质量为m,带电荷量为q,假设粒子速度方向都和纸面平行, 不计粒子重力。
(1)图中箭头表示某一粒子初速度的方向,OA与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A点,则初速度的大小是多少?
(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?