三个速度大小不同的的同种带电粒子,沿如图所示长方形 区域匀强磁场的上边缘射入,当它们从下边缘飞出时,对入射方向的偏角分别为900、600、300,则它们在磁场中运动时间之比为
A.1:1:1 | B.1:2:3 | C.3:2:1 | D. |
如图,一匀强磁场磁感应强度为B,方向垂直纸面向里,其边界是半径为R的圆.MN为圆的一直径.在M点有一粒子源可以在圆平面内向不同方向发射质量m、电量-q速度为v的 粒子,粒子重力不计,其运动轨迹半径大于R.
(1)求粒子在圆形磁场中运动的最长时间(答案中可包含某角度,需注明该角度的正弦或余弦 值);
(2)试证明:若粒子沿半径方向入射,则粒子一定沿半径方向射出磁场.
如图所示,在垂直纸面向里的匀强磁场中,有a、b两个电子从同一处沿垂直磁感线方向开始运动,a的初速度为v,b的初速度为2v.则 ( )
A.a先回到出发点 | B.b先回到出发点 | C.a、b同时回到出发点 | D.不能确定 |
如图,圆形区域内有一垂直纸面的匀强磁场,P为磁场边界上的一点。有无数带有同样电荷、具有同样质量的粒子在纸面内沿各个方向以相同的速率通过P点进入磁场。这些粒子射出边界的位置均处于边界的某一段弧上,这段圆弧的弧长是圆周长的1/3。将磁感应强度的大小从原来的B1变为B2,结果相应的弧长变为原来的一半,则B2/B1等于
A. | B. | C.2 | D.3 |
图中为四根与纸面垂直的长直导线,其横截面积位于正方形的四个顶点上,导线中通有大小相等的电流,方向如图所示。一带正电的粒子从正方形中心O点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )
A.向上 | B.向下 | C.向左 | D.向右 |
如右图甲所示,以MN为界的两匀强磁场B1=2B2,一带电+q、质量m的粒子从O点垂直MN进入B1磁场,则经过多长时间它将向下通过O点(不计粒子重力) ( )
A.2πm/qB1 |
B.2πm/qB2 |
C.2πm/(B1+B2)q |
D.πm/(B1+B2)q |
如图光滑的水平桌面处在竖直向下的匀强磁场中,桌面上平放一根一端开口、内壁光滑的绝缘细管,细管封闭端有一带电小球,小球直径略小于管的直径,细管的中心轴线沿y轴方向。在水平拉力F作用下,细管沿x轴方向做匀速运动,小球能从管口处飞出。小球在离开细管前的运动加速度a、拉力F随时间t变化的图象中,正确的是
如图所示,一根长度L的直导体棒中通过以大小为I的电流,静止放在导轨上,垂直于导体棒的匀强磁场的磁感应强度为B,B的方向与竖直方向成θ角,下列说法正确的是( )
A.导体棒受到磁场力大小为BLIsinθ |
B.导体棒对轨道压力大小为mg﹣BILsinθ |
C.导体棒受到导轨摩擦力为μ(mg﹣BILsinθ) |
D.一个带电粒子沿垂直于磁场方向射入匀强磁场中,由于使沿途空气电离而使粒子的动能逐渐减小 |
如图a、b、c为三个完全相同的带正电荷的油滴,在真空中从相同高度由静止下落到同一水平面,a下落中有水平匀强电场,b下落中有水平向里的匀强磁场,三油滴落地时间设为ta、tb、tc,落地时速度分别va、vb、vc,则( )
A.ta=tb=tc,va=vb=vc | B.ta=tb=tc,va>vb=vc |
C.tb>ta=tc,va=vb=vc | D.tb>ta=tc,va>vc=vb |
如图所示,有一垂直于纸面向外的有界匀强磁场,磁场的磁感应强度为B,其边界一边长L的正三角形(边界上有磁场)ABC为三角形的三个顶点,今有一质量为m、电荷量为+q的粒子(不计重力),以速度,从AB边上的某点P既垂直于AB边又垂直于磁场的方向射入,然后从BC边上某点Q射出,若从P点射入的粒子能从Q点射出,则
A. | B. | C. | D. |
电子质量为m、电荷量为q,以速度v0与x轴成600角射入磁感应强度为B的匀强磁场中,最后落在x轴上的P点,如图所示,求:
(1)粒子运动的半径R与周期T
(2)OP的长度;
(3)电子从由O点射入到落在P点所需的时间t.
设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一离子在静电力和洛伦兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略重力,下述说法中不正确的是( )
A.这离子必带正电荷 |
B.A点和B点位于同一高度 |
C.离子在C点时速度最大 |
D.离子到达B点后,将沿原曲线返回A点 |
如图所示,绝缘轨道由弧形轨道和半径为R=0.16m的圆形轨道、水平轨道连接而成,处于竖直面内的匀强电场中,PQ左右两侧电场方向相反,其中左侧方向竖直向下,场强大小均为103V/m,不计一切摩擦。质量为m=0.1kg的带正电小球可看作质点)从弧形轨道某处由静止释放,恰好能通过圆形轨道最高点,小球带电荷量q=1.0×10-3C,g取10m/s2。求:
(1)小球释放点的高度h
(2)若PQ右侧某一区域存在垂直纸面向里的匀强磁场(图中未画出),磁感应强度B=4×102T,小球通过圆形轨道后沿水平轨道运动到P点进入磁场,从竖直边界MN上的A点离开时速度方向与电场方向成30o,已知PQ、MN边界相距L=0.7m,求:
①小球从P到A经历的时间
②若满足条件的磁场区域为一矩形,求最小的矩形面积。
如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B.圆心O处有一放射源,放出粒子的质量为m,带电荷量为q,假设粒子速度方向都和纸面平行, 不计粒子重力。
(1)图中箭头表示某一粒子初速度的方向,OA与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A点,则初速度的大小是多少?
(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?