如图所示,在xoy平面直角坐标系第一象限内分布有垂直向外的匀强磁场,磁感应强度大小B=2.5×10-2T,在第二象限紧贴y轴和x轴放置一对平行金属板MN(中心轴线过y轴),极板间距d=0.4m,极板与左侧电路相连接。通过移动滑动头P可以改变极板MN间的电压。a、b为滑动变阻器的最下端和最上端(滑动变阻器的阻值分布均匀),a、b两端所加电压。在MN中心轴线上距y轴距离为L=0.4m处有一粒子源S,沿x轴正方向连续射出比荷为,速度为vo=2.0×104m/s带正电的粒子,粒子经过y轴进入磁场后从x轴射出磁场(忽略粒子的重力和粒子之间的相互作用)。
(1)当滑动头P在ab正中间时,求粒子射入磁场时速度的大小。
(2)当滑动头P在ab间某位置时,粒子射出极板的速度偏转角为,试写出粒子在磁场中运动的时间与的函数关系,并由此计算粒子在磁场中运动的最长时间。
如图甲所示,水平轨道光滑,小球质量为m,带电荷量为+q,可看做质点,空间内存在不断变化的电场和磁场,磁感应强度的大小随时间的变化规律如图乙所示,磁感应强度的大小,方向垂直纸面向里。电场在第1s、3s、5s……内方向水平向右,大小为,在第2s、4s、6s……内方向竖直向上,大小也为。小球从零时刻开始在A点由静止释放,求:
(1)t=1.5s时,小球与A点的直线距离大小;
(2)在A点前方轨道正上方高度为位置有一个带孔的卡片水平放置,若带电小球恰好可以从小孔中竖直穿过,求卡片与A点的水平距离大小。
如图所示,ABC为竖直平面内的光滑绝缘轨道,其中AB为倾斜直轨道,BC为与AB相切的圆形轨道,并且圆形轨道处在匀强磁场中,磁场方向垂直纸面向里.质量相同的甲、乙、丙三个小球中,甲球带正电、乙球带负电、丙球不带电.现将三个小球在轨道AB上分别从不同高度处由静止释放,都恰好通过圆形轨道的最高点,则
A.甲球的释放位置比乙球的高 |
B.运动过程中三个小球的机械能均保持不变 |
C.经过最高点时,三个小球的速度相等 |
D.经过最高点时,甲球的速度最小 |
(多选题)如图所示,以直角三角形AOC为边界的有界匀强磁场区域,磁感应强度为B,∠A=60°,AO=L,在O点放置一个粒子源,可以向各个方向发射某种带负电粒子(不计重力作用),粒子的比荷为,发射速度大小都为v0,且满足.粒子发射方向与OC边的夹角为θ,对于粒子进入磁场后的运动,下列说法正确的是( )
A.粒子有可能打到A点 |
B.以θ=60°飞入的粒子在磁场中运动时间最短 |
C.以θ<30°飞入的粒子在磁场中运动的时间都相等 |
D.在AC边界上只有一半区域有粒子射出 |
如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为的匀强磁场,在此区域内,沿水平面固定一半径为的圆环形光滑细玻璃管,环心在区域中心。一质量为、带电量为(>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。已知磁感应强度大小随时间的变化关系如图乙所示,其中。设小球在运动过程中电量保持不变,对原磁场的影响可忽略。
(1)在=0到这段时间内,小球不受细管侧壁的作用力,求小球的速度大小;
(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等。试求到这段时间内:
①细管内涡旋电场的场强大小;
②电场力对小球做的功。
如图将一金属薄片垂直置于磁场B中,在薄片的两个侧面a、b间通以电流I时,另外两侧c、f间产生电势差,这一现象称为霍尔效应。且满足U=kIB/d,式中d为薄片的厚度,k为霍尔系数。回答下列问题
(1)关于c、f两侧面哪面的电势较高? (填 c或f );
(2)其他条件不变,只增加磁感应强度B的大小,霍尔电压Um会怎样变化? (填增大或减小)
如图甲,真空中竖直放置两块相距为d的平行金属板P、Q,两板间加上如图乙最大值为U0的周期性变化的电压,在Q板右侧某个区域内存在磁感应强度大小为B、方向垂直于纸面向里的有界匀强磁场。在紧靠P板处有一粒子源A,自t=0开始连续释放初速不计的粒子,经一段时间从Q板小孔O射入磁场,然后射出磁场,射出时所有粒子的速度方向均竖直向上。已知电场变化周期,粒子质量为m,电荷量为+q,不计粒子重力及相互间的作用力。求:
(1)t=0时刻释放的粒子在P、Q间运动的时间;
(2)粒子射入磁场时的最大速率和最小速率;
(3)有界磁场区域的最小面积。
如图所示,一根长度L的直导体棒中通过以大小为I的电流,静止放在导轨上,垂直于导体棒的匀强磁场的磁感应强度为B,B的方向与竖直方向成θ角,下列说法正确的是( )
A.导体棒受到磁场力大小为BLIsinθ |
B.导体棒对轨道压力大小为mg﹣BILsinθ |
C.导体棒受到导轨摩擦力为μ(mg﹣BILsinθ) |
D.一个带电粒子沿垂直于磁场方向射入匀强磁场中,由于使沿途空气电离而使粒子的动能逐渐减小 |
如图a、b、c为三个完全相同的带正电荷的油滴,在真空中从相同高度由静止下落到同一水平面,a下落中有水平匀强电场,b下落中有水平向里的匀强磁场,三油滴落地时间设为ta、tb、tc,落地时速度分别va、vb、vc,则( )
A.ta=tb=tc,va=vb=vc | B.ta=tb=tc,va>vb=vc |
C.tb>ta=tc,va=vb=vc | D.tb>ta=tc,va>vc=vb |
如图所示,有一垂直于纸面向外的有界匀强磁场,磁场的磁感应强度为B,其边界一边长L的正三角形(边界上有磁场)ABC为三角形的三个顶点,今有一质量为m、电荷量为+q的粒子(不计重力),以速度,从AB边上的某点P既垂直于AB边又垂直于磁场的方向射入,然后从BC边上某点Q射出,若从P点射入的粒子能从Q点射出,则
A. | B. | C. | D. |
电子质量为m、电荷量为q,以速度v0与x轴成600角射入磁感应强度为B的匀强磁场中,最后落在x轴上的P点,如图所示,求:
(1)粒子运动的半径R与周期T
(2)OP的长度;
(3)电子从由O点射入到落在P点所需的时间t.
设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一离子在静电力和洛伦兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略重力,下述说法中不正确的是( )
A.这离子必带正电荷 |
B.A点和B点位于同一高度 |
C.离子在C点时速度最大 |
D.离子到达B点后,将沿原曲线返回A点 |
如图所示,绝缘轨道由弧形轨道和半径为R=0.16m的圆形轨道、水平轨道连接而成,处于竖直面内的匀强电场中,PQ左右两侧电场方向相反,其中左侧方向竖直向下,场强大小均为103V/m,不计一切摩擦。质量为m=0.1kg的带正电小球可看作质点)从弧形轨道某处由静止释放,恰好能通过圆形轨道最高点,小球带电荷量q=1.0×10-3C,g取10m/s2。求:
(1)小球释放点的高度h
(2)若PQ右侧某一区域存在垂直纸面向里的匀强磁场(图中未画出),磁感应强度B=4×102T,小球通过圆形轨道后沿水平轨道运动到P点进入磁场,从竖直边界MN上的A点离开时速度方向与电场方向成30o,已知PQ、MN边界相距L=0.7m,求:
①小球从P到A经历的时间
②若满足条件的磁场区域为一矩形,求最小的矩形面积。
如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B.圆心O处有一放射源,放出粒子的质量为m,带电荷量为q,假设粒子速度方向都和纸面平行, 不计粒子重力。
(1)图中箭头表示某一粒子初速度的方向,OA与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A点,则初速度的大小是多少?
(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?