如图所示,竖直平面内光滑圆弧形管道OMC半径为R,它与水平管道CD恰好相切。水平面内的等边三角形ABC的边长为L,顶点C恰好位于圆周最低点,CD是AB边的中垂线。在A、B两顶点上放置一对等量异种电荷,各自所带电荷量为q。现把质量为m、带电荷量为+Q的小球(小球直径略小于管道内径)由圆弧形管道的最高点M处静止释放,不计+Q对原电场的影响以及带电荷量的损失,取无穷远处为零电势,静电力常量为k,重力加速度为g,则
A.D点的电场强度大于C点
B.D点的电势大于C点
C.小球在管道中运动时,机械能不守恒
D.小球运动到圆弧形管道最低点C处时的电场力大小为
如图所示,竖直平面内光滑圆弧形管道MC半径为R,它与水平管道CD恰好相切。水平面内的等边三角形ABC的边长为L,顶点C恰好位于圆周最低点,CD是AB边的中垂线。在A、B两顶点上放置一对等量异种电荷,各自所带电荷量为q。现把质量为m、带电荷量为+Q的小球(小球直径略小于管道内径)由圆弧形管道的最高点M处静止释放,不计+Q对原电场的影响以及带电荷量的损失,取无穷远处为零电势,静电力常量为k,重力加速度为g,则
A.D点的电场强度大于C点
B.D点的电势大于C点
C.小球在管道中运动时,机械能不守恒
D.小球对圆弧形管道最低点C处的压力大小为
如图,绝缘水平面上固定着两个始终能视为点电荷的电荷+Q1和-Q2,其电荷量Q1>Q 2 , P是它们连线上Q2右侧距Q2足够近的一点。把另一带正电小滑块从P点沿两电荷连线所在直线向Q2右侧移到无穷远处,则在滑块向右的整个运动过程中( )
A.滑块所受的电场力一定是先减小后增大再减小 |
B.滑块所经过的各处电势一定是先降后升再降 |
C.滑块的电势能一定是先减小后增大 |
D.滑块的电势能一定是先增大后减小 |
如图所示,在竖直面内有一以O点为圆心的圆,AB、CD分别为这个圆沿竖直和水平方向的直径,该圆处于静电场中。将带负电荷的小球从O点以相同的动能分别沿竖直平面向不同方向射出,小球会沿圆所在平面运动并经过圆周上不同的点。已知小球从O点分别到A、B两点的过程中电场力对它做的功相同,小球到达D点时的电势能最大。若小球只受重力和电场力的作用,则下列说法中正确的是
A.此电场可能是位于C点的正点电荷形成的
B.小球到达B点时的动能等于到达点A时的动能
C.小球到达B点时的机械能与它在圆周上其他各点相比最小
D.小球到达A点时的电势能和重力势能之和与它在圆周上其他各点相比最小
如图所示,不带电的金属球A固定在绝缘底座上,它的正上方有B点,该处有带电液滴不断地自静止开始落下(不计空气阻力),液滴到达A球后将电荷量全部传给A球,设前一液滴到达A球后,后一液滴才开始下落,不计B点未下落带电液滴对下落液滴的影响,则下列叙述中正确的是
A.每个液滴做都做加速运动,都能到达A球 |
B.当液滴下落到重力等于电场力位置之后,液滴开始做匀速运动 |
C.能够下落到A球的所有液滴,在下落过程中所能达到的最大动能不相等 |
D.所有的液滴下落过程中电场力做功相等 |
如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量m =0.04kg,电量q=+2×10-4C的可视为质点的带电滑块与弹簧接触但不栓接.某一瞬间释放弹簧弹出滑块,滑块从水平台右端A点水平飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下.已知AB的竖直高度h=0.45m,倾斜轨道与水平方向夹角为α=37°,倾斜轨道长为L=2.0m,带电滑块与倾斜轨道的动摩擦因数μ=0.5.倾斜轨道通过光滑水平轨道CD(足够长)与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程滑块的电量保持不变.只有在竖直圆轨道处存在场强大小为E=2×103V/m,方向竖直向下的匀强电场.cos37°=0.8,sin37°=0.6,重力加速度g取10 m/s2,求:
(1)被释放前弹簧的弹性势能?
(2)要使滑块不离开圆轨道,竖直圆弧轨道的半径应该满足什么条件?
(3)如果竖直圆弧轨道的半径R=0.9m,滑块进入轨道后可以有多少次通过竖直圆轨道上距水平轨道高为0.01m的点P位置?
如图所示,M、N是水平放置的一对正对平行金属板,其中M板中央有一小孔O,板间存在竖直向上的匀强电场,AB是一根长为9L的轻质绝缘细杆,在杆上等间距地固定着10个完全相同的带电小球(小球直径略小于孔),每个小球带电荷量为q,质量为m,相邻小球间的距离为L,小球可视为质点,不考虑带电小球之间的库仑力.现将最下端的小球置于O处,然后将AB由静止释放,AB在运动过程中始终保持竖直,经观察发现,在第二个小球进入电场到第三个小球进入电场前这一过程中,AB做匀速直线运动.已知MN两板间距大于细杆长度.
(1)求两板间电场强度的大小;
(2)求上述匀速运动过程中速度大小;
(3)若AB以初动能EkO从O处开始向下运动,恰好能使第10个小球过O点,求EkO的大小.
一质量为m=6kg带电量为q= -0.1C的小球P自动摩擦因数μ=0.5倾角θ=53°的粗糙斜面顶端由静止开始滑下,斜面高h=6.0m,,斜面底端通过一段光滑小圆弧与一光滑水平面相连。整个装置处在水平向右的匀强电场中,场强E=200N/C,忽略小球在连接处的能量损失,当小球运动到水平面时,立即撤去电场。水平面上放一静止的不带电的质量也为m的1/4圆槽Q,圆槽光滑且可沿水平面自由滑动,圆槽的半径R=3m,如图所示。(sin53°="0.8" ,cos53°="0.6" ,g=10m/s2。)
(1)在沿斜面下滑的整个过程中,P球电势能增加多少?
(2)小球P运动到水平面时的速度大小。
(3)试判断小球P能否冲出圆槽Q。
如图所示,粗糙绝缘的水平面附近存在一个平行于水平面的电场,其中某一区域的电场线与x轴平行,在x轴上的电势φ与坐标x的关系用图中曲线表示,图中斜线为该曲线过点(0.15,3)的切线.现有一质量为0.20kg,电荷量为+2.0×10-8 C的滑块P(可视作质点),从x=0.10m处由静止释放,其与水平面的动摩擦因数为0.02.取重力加速度g=10m/s2.则下列说法正确的是( )
A.x=0.15m处的场强大小为2.0×l06 N/C |
B.滑块运动的加速度逐渐减小 |
C.滑块运动的最大速度为0.1m/s |
D.滑块运动速度先增大后减小 |
两个带等量正电的点电荷,电量分别为q,固定在图中a、b两点,ab=L,MN为ab连线的中垂线,交直线ab于O点,A为MN上的一点,OA=.取无限远处的电势为零.一带负电的试探电荷q,仅在静电力作用下运动,则:
A.若q从A点由静止释放,其在由A点向O点运动的过程中,加速度先增大后减小 |
B.若q从A点由静止释放,其将以O点为对称中心做往复运动 |
C.q由A点向O点运动时,其动能逐渐增大,电势能逐渐增大 |
D.若在A点给q一个合适的初速度,它可以做匀速圆周运动 |
如图所示,a、b、c、d为某匀强电场中的四个点,且ab∥cd、ab⊥bc,bc=cd=2ab=2l,电场线与四边形所在平面平行。已知φa=20V,φb=24V,φd=8V。一个质子经过b点的速度大小为v0,方向与bc夹角为45°,一段时间后经过c点,e为质子的电量,不计质子的重力,则( )
A.c点电势为14V |
B.质子从b运动到c所用的时间为 |
C.场强的方向由a指向c |
D.质子从b运动到c电场力做功为12eV |
空间某一静电场的电势φ随x变化情况如图所示,下列说法中正确的是( )
A.空间各点场强的方向均与x轴垂直 |
B.电荷沿x轴从O移到x1的过程中,电场力不做功 |
C.正电荷沿x轴从x1移到x2的过程中,电场力做正功,电势能减小 |
D.负电荷沿x轴从x1移到x2的过程中,电场力做正功,电势能增加 |
如图所示,长为L、倾角为的光滑绝缘斜面处于电场中,一带电量为+q、质量为m的小球以初速度v0从斜面底端A点开始沿斜面上滑,当到达斜面顶端B点时,速度仍为v0,则( )
A.A、B两点间的电压一定等于mgLsin/q
B.小球在B点的电势能一定大于在A点的电势能
C.若电场是匀强电场,则该电场的电场强度的最小值一定为mgsin/q
D.若该电场是斜面中点正上方某点的点电荷Q产生的,则Q一定是正电荷
如图所示,在绝缘水平面上,相距为L的A、B两点处分别固定着两个等量正电荷,a、b是AB连线上两点,其中Aa=Bb=L/4,O为AB的中点,一质量为m带电量为+q的小滑块(可视为质点)以出动能从a点出发,沿AB直线向b点运动,其中小滑块第一次经过O点时的动能为初动能的n倍(n>1),到达b点时动能恰好为零,小滑块最终停在O点,求:
(1)小滑块与水平面间的滑动摩擦因数;
(2)Ob两点间的电势差;