如图所示,光滑水平面上有一辆质量为M=1kg的小车,小车的上表面有一个质量为m=0.9kg的滑块,在滑块与小车的挡板间用轻弹簧相连接,滑块与小车上表面间的动摩擦因数为μ=0.2,整个系统一起以v1=10m/s的速度向右做匀速直线运动,此时弹簧长度恰好为原长。现在用一质量为m0=0.1kg的子弹,以v0=50m/s的速度向左射入滑块且不穿出,所用时间极短。当弹簧压缩到最短时,弹簧被锁定,测得此时弹簧的压缩量为d=0.50m,g =10m/s2。求
①子弹射入滑块的瞬间,子弹与滑块的共同速度;
②弹簧压缩到最短时,弹簧弹性势能的大小。
如图所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R="0.45" m
的1/4圆弧面,A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑,小滑块P1和P2的质量均为m,滑板的质量M=4m.P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.40,最大静摩擦力近似等于滑动摩擦力,开始时滑板紧靠槽的左端,P2静止在粗糙面的B点。P1以v0="4.0" m/s的初速度从A点沿弧面自由滑下,与P2发生弹性碰撞后,P1停在粗糙面B点上,当P2滑到C点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P2继续滑动,到达D点时速度为零,P1与P2可视为质点,取g="10" m/s2。问:
(1)P2在BC段向右滑动时,滑板的加速度为多大?
(2)BC长度为多少?N、P1和P2最终静止后,P1与P2间的距离为多少?
如图所示,质量为m的小球悬挂在长为L的细线下端,将它拉至与竖直方向成θ=60°的位置后自由释放.当小球摆至最低点时,恰好与水平面上原来静止的、质量为2m的木块相碰,碰后小球速度反向且动能是碰前动能的.已知木块与地面的动摩擦因素μ=,重力加速度取g.求:
(1)小球与木块碰前瞬间所受拉力大小
(2)木块在水平地面上滑行的距离
如图所示,在足够长的光滑水平轨道上有三个小木块A、B、C,质量分别为mA、mB、mC,且;mA=mB =" 1.Okg" ,mc = 2.O kg,其中B与C用一个轻弹簧拴接在一起,开始时整个装置处于静止状态.A和B之间有少许塑胶炸药,A的左边有一个弹性挡板.现在引爆塑胶炸药,若炸药爆炸产生的能量中有E=9.0J转化为A和B的动能,A和B分开后,A恰好在B、C之间的弹簧第一次恢复到原长时追上B,并且与B发生碰撞后粘在一起.忽略小木块和弹性挡板碰撞过程中的能量损失.求:
(1) 塑胶炸药爆炸后瞬间A与B的速度各为多大?
(2) 在A追上B之前弹簧弹性势能的最大值;
(3) A与B相碰以后弹簧弹性势能的最大值.
如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,即F=-kx,其中k是由系统本身特性决定的线性回复力常数,那么质点的运动就是简谐运动。
(1)图1所示为一理想单摆,摆球的质量为m,摆长为L。重力加速度为g。请通过计算说明该单摆做简谐运动的线性回复力常数k=?
(2)单摆做简谐运动的过程中,由于偏角很小,因此可以认为摆球沿水平直线运动。
如图2所示,质量为m的摆球在回复力F=-kx作用下沿水平的x轴做简谐运动,若振幅为A,在平衡位置O点的速度为vm,试证明:。
(3)如图3所示,两个相同的理想单摆均悬挂在P点。将B球向左拉开很小的一段距离由静止释放,B球沿水平的x轴运动,在平衡位置O点与静止的C球发生对心碰撞,碰撞后B、C粘在一起向右运动。已知摆球的质量为m,摆长为L。释放B球时的位置到O点的距离为d。重力加速度为g。求B、C碰撞后它们沿x轴正方向运动的最大距离。
(1)研究发现两个氘核(H)可聚变成He,已知氘核的质量为2.013 6 u,中子的质量为1.008 7 u, He核质量为3.015 0 u.若质量亏损1 u对应的核能为931.5 MeV,则两个氘核聚变成He核的核反应方程为________________;上述反应中释放的核能为________.
(2)如图所示,光滑水平面上三个物块A、B、C,A、B间有压缩且被锁定的轻弹簧,三物块均处于静止状态.现解除对弹簧的锁定,B离开弹簧后,以速度v0与C相碰,最终B与A运动的速度相同,已知mA=6 kg,mB=1 kg,mC=14 kg,求B与C相碰后C的速度大小.
(选修3-5)
(I)下列说法正确的是__________
A.放射性元素的半衰期是针对大量原子核的统计规律 |
B.α、β、γ射线比较,α射线的电离作用最弱 |
C.光的波长越短,光子的能量越大,光的粒子性越明显 |
D.核聚变原理是制造原子弹的理论基础 |
E.原子的全部正电荷和全部质量都集中在原子核里
F.由玻尔的原子模型可以推知,氢原子处于激发态,量子数越大,核外电子动能
越小
(II)如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静置在光滑水平面上。现有一滑块A从光滑曲面上离水平面高处由静止开始滑下,与滑块B发生碰撞(时间极短)并粘在一起压缩弹簧推动滑块C向前运动,经过一段时间,滑块C脱离弹簧,继续在水平面上做匀速运动。已知,求:
(1)滑块A与滑块B碰撞时的速度大小;
(2)滑块A与滑块B碰撞结束瞬间它们的速度的大小;
(3)滑块C在水平面上匀速运动的速度的大小。
如图所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C的动摩擦因数均为μ=0.5,小车C与水平地面的摩擦忽略不计,取g=10 m/s2.求:
(1)滑块A与B碰撞后瞬间的共同速度的大小;
(2)小车C上表面的最短长度.
如图,倾角为θ的斜面固定。有n个质量都为m的相同的小木块(可视为质点)放置在斜面上。相邻两小木块间距离都为,最下端的木块距底端也是,小木块与斜面间的动摩擦因数都为μ。在开始时刻,第一个小木块从斜面顶端以初速度v0沿斜面下滑,其余所有木块都静止,由于第一个木块的下滑将依次引起一系列的碰撞。设每次碰撞的时间极短,在每次碰撞后,发生碰撞的木块都粘在一起运动,直到最后第n个木块到达底端时,速度刚好为零。已知重力加速度为g.求:
第一次碰撞后小木块1的速度大小v;
从第一个小木块开始运动到第一次碰撞后系统损失的机械能;
发生一系列碰撞后,直到最后第n个木块到达底端,在整个过程中,由于碰撞所损失的总机械能总。
图中滑块和小球的质量均为m,滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O由一不可伸长的轻绳相连,轻绳长为.开始时,轻绳处于水平拉直状态,小球和滑块均静止.现将小球由静止释放,当小球到达最低点时,滑块刚好被一表面涂有粘住物质的固定挡板粘住,在极短的时间内速度减为零,小球继续向左摆动,当轻绳与竖直方向的夹角θ=60°时小球到达最高点.求
(1)小球到达最低点时速度的大小;
(2)滑块与挡板刚接触的瞬时,滑块速度的大小;
(3)小球从释放到第一次到达最低点的过程中,绳的拉力对小球所做的功.
质量均为m=2kg的三物块A、B、C,物块A、B用轻弹相连,初始时弹簧处于原长,A、B两物块都以v=3m/s的速度在光滑的水平地面上运动,物块C静止在前方,如图所示。B与C碰撞后二者会粘在起运动。求在以后的运动中:
(1)从开始到弹簧的弹性势能第一次达到最大时弹簧对物块A的冲量;
(2)系统中弹性势能的最大值EP是多少?
如图所示,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,物体A被水平速度为v0的子弹击中,子弹嵌在其中,已知A的质量是B的质量的3/4,子弹的质量是B的质量的1/4。求:
⑴A物体获得的最大速度;
⑵弹簧压缩量最大时B物体的速度。
如图所示,光滑水平面上静止放着长L=1.6m,质量为M=3kg的木块(厚度不计),一个质量为m=1kg的小物体放在木板的最右端,m和M之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F,(g取10m/s2)
为使小物体不掉下去,F不能超过多少?
如果F=10N,求小物体所能获得的最大动能?
如果F=10N,要使小物体从木板上掉下去,F作用的时间不能小于多少?
如图所示,水平地面上静止放置着物块B和C,相距l=1.0m。物块A以速度v0=10m/s沿水平方向与B正碰。碰撞后A和B牢固地粘在一起向右运动,并再与C发生正碰,碰后瞬间C的速度v=2.0m/s。已知A和B的质量均为,C的质量为A质量的K倍,物块与地面的动摩擦因数μ=0.45。(设碰撞时间很短,取10m/s2)
计算与C碰撞前瞬间AB的速度;
根据AB与C的碰撞过程分析K的取值范围,并讨论与C碰撞后AB的可能运动方向。
如图所示 ,粗糙斜面与光滑水平地面通过光滑小圆弧平滑连接,斜面倾角,滑块A、C、D的质量均为,滑块B的质量为,各滑块均可视为质点。A、B间夹着微量火药。K为处于原长的轻质弹簧,两端分别栓接滑块B和C。火药爆炸后,A与D相碰并粘在一起,沿斜面前进L =" 0.8" m 时速度减为零,接着使其保持静止。已知滑块A、D与斜面间的动摩擦因数均为 μ = 0.5,运动过程中弹簧始终处于弹性限度内,取 g = 10 m/s2,sin37°= 0.6,cos37°= 0.8。求:
火药爆炸后A的最大速度vA;
滑块B、C和弹簧K构成的系统在相互作用过程中,弹簧的最大弹性势能Ep;
滑块C运动的最大速度vC。