如图所示,空间存在着方向竖直向上的匀强电场和方向垂直于纸面向内,磁感应强度大小为B的匀强磁场,带电量为+q、质量为m的小球Q静置在光滑绝缘的水平高台边缘,另一质量为m不带电的绝缘小球P以水平初速度v0向Q运动,小球P、Q正碰过程中没有机械能损失且电荷量不发生转移,已知匀强电场的电场强度E=,水平台面距离地面高度,重力加速度为g,不计空气阻力。
(1)求P、Q两球首次发生弹性碰撞后,小球Q的速度大小;
(2)P、Q两球首次发生弹性碰撞后,经多少时间小球P落地,落地点与平台边缘间的水平距离多大?
(3)若撤去匀强电场,并将小球Q重新放在平台边缘,小球P仍以水平初速度向Q运动,小球Q的运动轨迹如图所示,已知Q球在最高点和最低点所受全力的大小相等,求小球Q在运动过程中的最大速度和第一次下降的最大距离H。
一长木板置于光滑水平地面上,木板左端放置一小物块,在木板右方有一墙壁,如图(a)所示。时刻开始,小物块与木板一起以共同速度向右运动,直至时木板与墙壁碰撞(碰撞时间极短)。碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。已知碰撞后1s时间内小物块的图线如图(b)所示。木板的质量是小物块质量的1.5倍,重力加速度大小g取。求
(1)木板和木块的最终速度v (2)木板的最小长度L; (3)小物块与木板间的动摩擦因数μ2
如图所示,在光滑水平地面上有一质量为2m的长木板,其左端放有一质量为m的重物(可视为质点),重物与长木板之间的动摩擦因数为。开始时,长木板和重物都静止,现在给重物一初速度v0,已知长木板撞到前方固定的障碍物时,长木板和重物的速度恰好相等,长木板与障碍物发生碰撞时不损失机械能,重物始终不从长木板上掉下来。
(1)求长木板与前方固定的障碍物相撞时的速度的大小;
(2)求长木板撞到前方固定的障碍物前运动的位移大小;
(3)求重物最终在长木板上相对滑动的距离大小。
两物块A、B用轻弹簧相连,质量均为2 kg,最初,A、B两物块均以v=6 m/s的速度在光滑水平面上向右匀速运动,质量4 kg的物块C静止在A、B的正前方,其情景如图⑵所示。B与C碰撞后二者会粘在一起运动。求在此后的运动中弹簧的最大弹性势能。
如图所示,质量为M、半径为R的质量分布均匀的圆环静止在粗糙的水平桌面上,一质量为m(m>M)的光滑小球以某一水平速度通过环上的小孔正对环心射入环内,与环发生第一次碰撞后到第二次碰撞前小球恰好不会从小孔中穿出。假设小球与环内壁的碰撞为弹性碰撞,只考虑圆环与桌面之间的摩擦,求圆环通过的总位移?
如图所示,一个可视为质点的小球从距地面125高的A处开始自由下落,到达地面O点后经过地面反弹上升到最大高度为45的B处,已知AO、OB在同一直线上,不计空气阻力,,求:
(1)小球下落的时间为多少?小球从A点下落再反弹至B点全程位移为多少?
(2)小球经过地面反弹后瞬间的速度为多大?
(3)小球下落时最后1秒内的位移为多少?
如图所示,固定的光滑平台左端固定有一光滑的半圆轨道,轨道半径为R,平台上静止放着两个滑块A、B,其质量mA=m,mB =2m,两滑块间夹有少量炸药.平台右侧有一小车,静止在光滑的水平地面上,小车质量M=3m,车长L=2R,车面与平台的台面等高,车面粗糙,动摩擦因数μ=0.2,右侧地面上有一立桩,立桩与小车右端的距离为S,S在0<S<2R的范围内取值,当小车运动到立桩处立即被牢固粘连。点燃炸药后,滑块A恰好能够通过半圆轨道的最高点D,滑块B冲上小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个滑块的速度方向在同一水平直线上,重力加速度为g=10m/s2.求:
(1)滑块A在半圆轨道最低点C受到轨道的支持力FN。
(2)炸药爆炸后滑块B的速度大小vB。
(3)请讨论滑块B从滑上小车在小车上运动的过程中,克服摩擦力做的功Wf与S的关系。
如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN的半径为R=3.2m,水平部分NP长L=3.5m,物体B静止在足够长的平板小车C上,B与小车的接触面光滑,小车的左端紧贴平台的右端。从M点由静止释放的物体A滑至轨道最右端P点后再滑上小车,物体A滑上小车后若与物体B相碰必粘在一起,它们间无竖直作用力。A与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等。物体A、B和小车C的质量均为1kg,取g=10m/s2。求:
(1)物体A进入N点前瞬间对轨道的压力大小?
(2)物体A在NP上运动的时间?
(3)物体A最终离小车左端的距离为多少?
如图,长度S=2m的粗糙水平面MN的左端M处有一固定挡板,右端N处与水平传送带平滑连接.传送带以一定速率v逆时针转动,其上表面NQ间距离为L=3m.可视为质点的物块A和B紧靠在一起并静止于N处,质量mA=mB=1kg.A、B在足够大的内力作用下突然分离,并分别向左、右运动,分离过程共有能量E=9J转化为A、B的动能.设A、B与传送带和水平面MN间的动摩擦因数均为μ=0.2,与挡板碰撞均无机械能损失.取重力加速度g=10m/s2,求:
(1)分开瞬间A、B的速度大小;
(2)B向右滑动距N的最远距离;
(3)要使A、B不能再次相遇,传送带速率的取值范围.
如图所示,一轻绳悬挂着粗细均匀且足够长的棒,棒下端离地面高为h,上端套着一个细环,环和棒的质量均为m,设环和棒间的最大静摩擦力等于滑动摩擦力,且满足最大静摩擦力f=kmg(k为大于1的常数,g为重力加速度),某时刻突然断开轻绳,环和棒一起自由下落,棒每次与地面碰撞时与地面接触的时间极短,且无机械能损失,棒始终保持竖直直立状态,不计空气阻力,求:
(1)棒第一次与地面碰撞后弹起上升的过程中,环的加速度大小a;
(2)从断开轻绳到棒与地面第二次碰撞的瞬间,棒运动的路程s;
(3)从断开轻绳到棒和环都静止的过程中,环相对于棒滑动的距离L。
如图所示,A、B是静止在光滑水平地面上相同的两块长木板,长度均为L= 0.75m,A的左端和B的右端接触,两板的质量均为M=2.0kg。C是一质量为m=l.0kg的小物块,现给它一初速度v0=2.0m/s,使它从B板的左端开始向右滑动。已知C与A、B之间的动摩擦因数均为=0.20,最终C与A保持相对静止。取重力加速度g=l0,求木板A、B最终的速度分别是多少?
如图所示,竖直放置的两块足够长的平行金属板,相距0.08m,两板间的电压是2400V,在两板间的电场中用丝线悬挂着质量是5×10﹣3kg的带电小球,平衡后,丝线跟竖直方向成30°角,若将丝线剪断,则在剪断丝线后,(g取10m/s2)
(1)说明小球在电场中做什么运动;
(2)求小球的带电量;
(3)设小球原来到负极板的距离为0.06m,则经过多少时间小球碰到金属板?
如图所示,AB为倾角θ=37°的斜面轨道,轨道的AC部分光滑,CB部分粗糙。BP为圆心角等于143°,半径R=1m的竖直光滑圆弧形轨道,两轨道相切于B点,P、0两点在同一竖直线上,轻弹簧一端固定在A点,另一自由端在斜面上C点处,现有一质量m = 2kg的物块在外力作用下将弹簧缓慢压缩到D点后(不栓接)释放,物块经过C点后,从C点运动到B点过程中的位移与时间的关系为(式中x单位是m , t单位是s),假设物块第一次经过B点后恰能到达P点,(sin 37°=0.6,cos 37°=0.8,
g取10m/s2)试求:
(1)若CD=1m,物块从D点运动到C点的过程中,弹簧对物块所做的功;
(2)B、C两点间的距离x。
(3)若在P处安装一个竖直弹性挡板,小物块与挡板碰撞时间极短且无机械能损失,小物块与弹簧相互作用不损失机械能,试通过计算判断物块在第一次与挡板碰撞后的运动过程中是否会脱离轨道?
如图,光滑水平直轨道上有三个质量均为m的物块A、B、C. B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中,
(1)整个系统损失的机械能;
(2)A与挡板分离时,A的速度(计算结果可用根号表示).