如图,光滑水平直轨道上有三个质量均为m的物块A、B、C. B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中,(1)整个系统损失的机械能;(2)A与挡板分离时,A的速度(计算结果可用根号表示).
在水平面上放置一倾角为θ的斜面体A,质量为M,与水平面间动摩擦因数为μ1,在其斜面上静放一质量为m的物块B,A、B间动摩擦因数为μ2(已知μ2>tanθ),如图所示。现将一水平向左的力F作用在斜面体A上, F的数值由零逐渐增加,当A、B将要发生相对滑动时,F不再改变。设滑动摩擦力等于最大静摩擦力。求:(1)B所受摩擦力的最大值;(2)水平力F的最大值;(3)定性画出整个过程中AB的速度随时间变化的图象。
如图所示,水平轨道AB与位于竖直面内半径为R=0.90m的半圆形光滑轨道BCD相连,半圆形轨道的BD连线与AB垂直。质量为m=1.0kg可看作质点的小滑块在恒定外力F作用下从水平轨道上的A点由静止开始向右运动,物体与水平地面间的动摩擦因数μ=0.5。到达水平轨道的末端B点时撤去外力,小滑块继续沿半圆形轨道运动,且恰好能通过轨道最高点D,滑块脱离半圆形轨道后又刚好落到A点。g取10 m/s2,求:(1)滑块经过B点进入圆形轨道时对轨道的压力大小。(2)滑块在AB段运动过程中恒定外力F的大小。
一质量m=0.5 kg的滑块以一定的初速度冲上一倾角θ=37°足够长的斜面,某同学利用传感器测出了滑块冲上斜面过程中多个时刻的瞬时速度,并用计算机做出了小物块上滑过程的v-t图象,如图所示。(最大静摩擦力等于滑动摩擦力,取sin37°=0.6,cos37°=0.8,g="10" m/s2)求:(1)滑块与斜面间的动摩擦因数。(2)判断滑块最后能否返回斜面底端?若能返回,求出返回斜面底端时的速度大小;若不能返回,求出滑块停在什么位置。
氢原子基态的轨道半径为0.53×10-11m,基态能量为-13.6eV,将该原子置于静电场中使其电离,静电场场强大小至少为多少?静电场提供的能量至少为多少
根据巴耳末公式,指出氢原子光谱在可见光范围内波长最长的两条谱线所对应的n,这两条谱线的波长各是多少?氢原子光谱有何特点?