如图所示,滑块的质量m1="0.1" kg,用长为L的细线悬挂质量为m2="0.1" kg的小球,小球可视为质点,滑块与水平地面间及滑块与传送带间的动摩擦因数均为μ=0.2,滑块到小球及小球到传送带的距离均为s="2" m,传送带以v=4m/s的恒定速度匀速逆时针转动,传送带足够长。开始时,滑块以速度v0="8" m/s沿水平方向向右运动,并与小球发生弹性正碰,碰后小球能在竖直平面内做完整的圆周运动。问:
(1)细线长度L应该满足什么条件?
(2)若碰撞后小球恰能在竖直平面内完成完整的圆周运动并再次与滑块弹性正碰,则滑块与小球第一次碰撞后瞬间,悬线对小球的拉力多大?
(3)滑块从滑上传送带到从传送带上滑下,一共产生多少热量?(重力加速度g=10m/s2)
如图所示,质量M=3.5kg的小车静止于光滑水平面上靠近桌子处,其上表面与水平桌面相平,小车长L=1.2m,其左端放有一质量为0.5kg的滑块Q。水平放置的轻弹簧左端固定,质量为1kg的小物块P置于桌面上的A点并与弹簧的右端接触。此时弹簧处于原长,现用水平向左的推力将P缓慢推至B点(弹簧仍在弹性限度内)时,推力做的功为WF=6J,撤去推力后,P沿桌面滑到小车上并与Q相碰,最后Q停在小车的右端,P停在距小车左端0.5m处。已知AB间距L1=5cm,A点离桌子边沿C点距离L2=90cm,P与桌面间动摩擦因数,P、Q与小车表面间动摩擦因数。(g=10m/s2)求:
(1)P到达C点时的速度 vC。
(2)P与Q碰撞后瞬间Q的速度大小。
有人设想:可以在飞船从运行轨道进入返回地球程序时,借飞船需要减速的机会,发射一个小型太空探测器,从而达到节能的目的。如图所示,飞船在圆轨道Ⅰ上绕地球飞行,其轨道半径为地球半径的k倍(k>1)。当飞船通过轨道Ⅰ的A点时,飞船上的发射装置短暂工作,将探测器沿飞船原运动方向射出,并使探测器恰能完全脱离地球的引力范围,即到达距地球无限远时的速度恰好为零,而飞船在发射探测器后沿椭圆轨道Ⅱ向前运动,其近地点B到地心的距离近似为地球半径R。以上过程中飞船和探测器的质量均可视为不变。已知地球表面的重力加速度为g。
(1)求飞船在轨道Ⅰ运动的速度大小;
(2)若规定两质点相距无限远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能,式中G为引力常量。在飞船沿轨道Ⅰ和轨道Ⅱ的运动过程,其动能和引力势能之和保持不变;探测器被射出后的运动过程中,其动能和引力势能之和也保持不变。
①求探测器刚离开飞船时的速度大小;
②已知飞船沿轨道Ⅱ运动过程中,通过A点与B点的速度大小与这两点到地心的距离成反比。根据计算结果说明为实现上述飞船和探测器的运动过程,飞船与探测器的质量之比应满足什么条件。
甲图是我国自主研制的200mm离子电推进系统, 已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器。离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势。离子推进器的工作原理如图乙所示,推进剂氙原子P喷注入腔室C后,被电子枪G射出的电子碰撞而电离,成为带正电的氙离子。氙离子从腔室C中飘移过栅电极A的速度大小可忽略不计,在栅电极A、B之间的电场中加速,并从栅电极B喷出。在加速氙离子的过程中飞船获得推力。
已知栅电极A、B之间的电压为U,氙离子的质量为m、电荷量为q。
(1)将该离子推进器固定在地面上进行试验。求氙离子经A、B之间的电场加速后,通过栅电极B时的速度v的大小;
(2)配有该离子推进器的飞船的总质量为M,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B。推进器工作时飞船的总质量可视为不变。求推进器在此次工作过程中喷射的氙离子数目N。
(3)可以用离子推进器工作过程中产生的推力与A、B之间的电场对氙离子做功的功率的比值S来反映推进器工作情况。通过计算说明采取哪些措施可以增大S,并对增大S的实际意义说出你的看法。
如图所示,一质量m1=1kg半径R=0.8m的光滑四分之一圆弧滑槽AB,固定于光滑水平台面上,现有可视为质点的滑块m2=15kg,从滑槽顶端A点静止释放,到达底端B后滑上与水平台面等高的水平传送带CD,传送带固定不转动时,滑块恰能到达D端,已知传送带CD的长L=4m,g取10m/s2。
(1)滑块滑到圆弧底端B点时对滑槽的压力多大?滑块从C到D需要多长时间?
(2)如果滑槽不固定,滑块滑到圆弧底端B时的速度多大?
(3)如果滑槽不固定,如果滑槽不固定,为使滑块从C到D历时与第一问相同,传送带应以多大的速度匀速转动?(答案可用根号表示)
如图所示,空间存在着方向竖直向上的匀强电场和方向垂直于纸面向内,磁感应强度大小为B的匀强磁场,带电量为+q、质量为m的小球Q静置在光滑绝缘的水平高台边缘,另一质量为m不带电的绝缘小球P以水平初速度v0向Q运动,小球P、Q正碰过程中没有机械能损失且电荷量不发生转移,已知匀强电场的电场强度E=,水平台面距离地面高度,重力加速度为g,不计空气阻力。
(1)求P、Q两球首次发生弹性碰撞后,小球Q的速度大小;
(2)P、Q两球首次发生弹性碰撞后,经多少时间小球P落地,落地点与平台边缘间的水平距离多大?
(3)若撤去匀强电场,并将小球Q重新放在平台边缘,小球P仍以水平初速度向Q运动,小球Q的运动轨迹如图所示,已知Q球在最高点和最低点所受全力的大小相等,求小球Q在运动过程中的最大速度和第一次下降的最大距离H。
如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数=0.3,OB部分光滑。另一小物块a.放在车的最左端,和车一起以Vo=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连。已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内。a、b两物块视为质点质量均为m=lkg,碰撞时间极短且不粘连,碰后一起向右运动。(取g="10" m/s2)求:
(1)物块a与b碰后的速度大小;
(2)当物块a相对小车静止时小车右端B到挡板的距离;
(3)当物块a相对小车静止时在小车上的位置到O点的距离。
如图所示,光滑水平台面MN上放两个相同小物块A、B,右端N处与水平传送带理想连接,传送带水平部分长度L=8m,沿逆时针方向以恒定速度v0=2m/s匀速转动。物块A、B(大小不计,视作质点)与传送带间的动摩擦因数均为μ=0.2,物块A、B质量均为m=1kg。开始时A、B静止,A、B间压缩一轻质短弹簧。现解除锁定,弹簧弹开A、B,弹开后B滑上传送带,A掉落到地面上的Q点,已知水平台面高h=0.8m,Q点与水平台面间右端间的距离S=1.6m,g取10m/s2。
(1)求物块A脱离弹簧时速度的大小;
(2)求弹簧储存的弹性势能;
(3)求物块B在水平传送带上运动的时间。
如图所示,水平放置的轻质弹簧左端与竖直墙壁相连,右侧与质量的小物块甲相接触但不粘连,B点为弹簧自由端,光滑水平面AB与倾角的倾斜面BC在B处平滑连接,OCD在同一条竖直线上,CD右端是半径的光滑圆弧,斜面BC与圆弧在C处也平滑连接,物块甲与斜面BC间的动摩擦因数。现用力将物块甲缓慢向左压缩弹簧,使弹簧获得一定能量后撤去外力,物块甲刚好能滑到C点,与此同时用长的细线悬挂于O点的小物块乙从图示位置静止释放,,物块乙到达C点时细线恰好断开且与物块甲发生正碰,碰撞后物块甲恰好对圆弧轨道无压力,物块乙恰好从图中P点离开圆弧轨道,取,,求:
(1)撤去外力时弹簧的弹性势能;
(2)小物块乙的质量M和细线所能承受的最大拉力;
(3)两物块碰撞过程中损失的能量;
(4)小物块乙落到水平面上时的速度大小(保留一位有效数字)。
如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A点由静止出发绕O点下摆,当摆到最低点B时,女演员在极短时间内将男演员沿水平方向推出,然后自已刚好能乘秋千回到A点,而男演员则落到地面上的C点。已知男演员质量为m,秋千的质量不计,秋千的摆长为R,C点与O点的竖直距离为5R,C点与O点的水平距离为8R,重力加速度为g,空气阻力不计。求:
(1)男、女演员到达秋千最低点B时的速度大小;
(2)男、女演员刚分离时各自的速度大小
(3)女演员在极短时间内将男演员推出的过程中对男演员所做的功。
工厂里有一种运货的过程可以简化为如图所示,货物以的初速度滑上静止的货车的左端,已知货物质量m=20kg,货车质量M=30kg,货车高h=0.8m。在光滑轨道OB上的A点设置一固定的障碍物,当货车撞到障碍物时会被粘住不动,而货物就被抛出,恰好会沿BC方向落在B点。已知货车上表面的动摩擦因数,货物可简化为质点,斜面的倾角为。
(1)求货物从A点到B点的时间;
(2)求AB之间的水平距离;
(3)若已知OA段距离足够长,导致货物在碰到A之前已经与货车达到共同速度,则货车的长度是多少?
(原创)某兴趣小组设计了一种实验装置,用来研究碰撞问题,其模型如图所示,光滑轨道中间部分水平,右侧为位于竖直平面内半径为R的半圆,在最低点与直轨道相切.5个大小相同、质量不等的小球并列静置于水平部分,球间有微小间隔,从左到右,球的编号依次为0、1、2、3、4,球的质量依次递减,每球质量与其相邻左球质量之比为k(k<1).将0号球向左拉至左侧轨道距水平高h处,然后由静止释放,使其与1号球碰撞,1号球再与2号球碰撞……所有碰撞皆为无机械能损失的正碰(不计空气阻力,小球可视为质点,重力加速度为g).
(1)0号球与1号球碰撞后,1号球的速度大小v1;
(2)若已知h=0.1m,R=0.64m,要使4号球碰撞后能过右侧轨道的最高点,问k值为多少?
如图所示,质量为M=0.5kg、长L=1m的平板车B静止在光滑水平面上,小车左端紧靠一半径为R=0.8m的光滑四分之一圆弧,圆弧最底端与小车上表面相切,圆弧底端静止一质量为mC=1kg的滑块.现将一质量为mA=1kg的小球从圆弧顶端静止释放,小球到达圆弧底端后与C发生弹性碰撞.C与B之间的动摩擦因数μ=0.2,取g=10m/s2.若在C刚好滑上木板B上表面的同时,给B施加一个水平向右的拉力F.试求:
(1)滑块C滑上B的初速度v0.
(2)若F=2N,滑块C在小车上运动时相对小车滑行的最大距离.
(3)如果要使C能从B上滑落,拉力F大小应满足的条件.
在许多建筑工地经常使用打夯机将桩料打入泥土中以加固地基。打夯前先将桩料扶起、使其缓慢直立进入泥土中,每次卷扬机都通过滑轮用轻质钢丝绳将夯锤提升到距离桩顶=5m处再释放,让夯锤自由下落,夯锤砸在桩料上并不弹起,而随桩料一起向下运动。设夯锤和桩料的质量均为m="500" kg,泥土对桩料的阻力为,其中常数,是桩料深入泥土的深度。卷扬机使用电动机来驱动,卷扬机和电动机总的工作效率为=95%,每次卷扬机需用20 s的时间提升夯锤。提升夯锤时忽略加速和减速的过程,不计夯锤提升时的动能,也不计滑轮的摩擦。夯锤和桩料的作用时间极短,g取10,求:
(1)在提升夯锤的过程中,电动机的输入功率;(结果保留2位有效数字)
(2)打完第一夯后,桩料进入泥土的深度。
如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,即F=-kx,其中k是由系统本身特性决定的线性回复力常数,那么质点的运动就是简谐运动。
(1)图1所示为一理想单摆,摆球的质量为m,摆长为L。重力加速度为g。请通过计算说明该单摆做简谐运动的线性回复力常数k=?
(2)单摆做简谐运动的过程中,由于偏角很小,因此可以认为摆球沿水平直线运动。
如图2所示,质量为m的摆球在回复力F=-kx作用下沿水平的x轴做简谐运动,若振幅为A,在平衡位置O点的速度为vm,试证明:。
(3)如图3所示,两个相同的理想单摆均悬挂在P点。将B球向左拉开很小的一段距离由静止释放,B球沿水平的x轴运动,在平衡位置O点与静止的C球发生对心碰撞,碰撞后B、C粘在一起向右运动。已知摆球的质量为m,摆长为L。释放B球时的位置到O点的距离为d。重力加速度为g。求B、C碰撞后它们沿x轴正方向运动的最大距离。