如图,光滑水平直轨道上有三个质量均为m的物块A、B、C. B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中,
(1)整个系统损失的机械能;
(2)A与挡板分离时,A的速度(计算结果可用根号表示).
如图所示,三个质量分别为3kg、1kg.1kg的木块A.B、C放置在光滑水平轨道上,开始时B、C均静止,A以初速度v0=5m/s向右运动,A与B碰撞后分开,B又与C发生碰撞并粘在一起,此后A与B间的距离保持不变.
①求B与C碰撞前B的速度大小;
②若A与B的碰撞时间约为0.01s,求B对A的作用力F.
如图所示,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,物体A被水平速度为v0的子弹击中,子弹嵌在其中,已知A的质量是B的质量的3/4,子弹的质量是B的质量的1/4。求:
⑴A物体获得的最大速度;
⑵弹簧压缩量最大时B物体的速度。
如图,质量分别为mA、mB的两个弹性小球A、B静止在地面上方,B球距离地面的高度h=0.8m,A球在B球的正上方。先将B球释放,经过一段时间后再将A球释放。当A球下落t=0.3s时,刚好与B球在地面上方的P点处相碰,碰撞时间极短,碰后瞬间A球的速度恰好为零。已知mB=3mA,重力加速度大小g=10m/s2,忽略空气阻力及碰撞中的动能损失。求
(1)B球第一次到达地面时的速度;
(2)P点距离地面的高度。
如图所示,在水平面上有一弹簧,其左端与墙壁相连,O点为弹簧原长位置,O点左侧水平面光滑,水平段OP长L=1m,P点右侧一与水平方向成的足够长的传送带与水平面在P点平滑连接,皮带轮逆时针转动速率为3m/s,一质量为1kg可视为质点的物块A压缩弹簧(与弹簧不栓接),使弹簧获得弹性势能,物块与OP段动摩擦因数,另一与A完全相同的物块B停在P点,B与传送带的动摩擦因数,传送带足够长,A与B的碰撞时间不计,碰后A.B交换速度,重力加速度,现释放A,求:
(1)物块A.B第一次碰撞前瞬间,A的速度
(2)从A.B第一次碰撞后到第二次碰撞前,B与传送带之间由于摩擦而产生的热量
(3)A.B能够碰撞的总次数
如图所示,AB为倾角θ=37°的斜面轨道,轨道的AC部分光滑,CB部分粗糙。BP为圆心角等于143°,半径R=1m的竖直光滑圆弧形轨道,两轨道相切于B点,P、0两点在同一竖直线上,轻弹簧一端固定在A点,另一自由端在斜面上C点处,现有一质量m = 2kg的物块在外力作用下将弹簧缓慢压缩到D点后(不栓接)释放,物块经过C点后,从C点运动到B点过程中的位移与时间的关系为(式中x单位是m , t单位是s),假设物块第一次经过B点后恰能到达P点,(sin 37°=0.6,cos 37°=0.8,
g取10m/s2)试求:
(1)若CD=1m,物块从D点运动到C点的过程中,弹簧对物块所做的功;
(2)B、C两点间的距离x。
(3)若在P处安装一个竖直弹性挡板,小物块与挡板碰撞时间极短且无机械能损失,小物块与弹簧相互作用不损失机械能,试通过计算判断物块在第一次与挡板碰撞后的运动过程中是否会脱离轨道?
A、B两列火车,在同一轨道上同向行驶,A车在前,其速度vA=10m/s,B车在后,速度vB=30m/s,因大雾能见度很低,B车在距A车Δs=75m时才发现前方有A车,这时B车立即刹车,但B车要经过180m才能够停止.问:(1)B车刹车时的加速度是多大?
(2)若B车刹车时A车仍按原速前进,两车是否相撞?若会相撞,将在B车刹车后何时?若不会相撞,则两车最近距离是多少?
(3)若B车在刹车的同时发出信号,A车司机经过Δt=4s收到信号后加速前进,则A车的加速度至少多大才能避免相撞?
如图所示,光滑水平地面上,在质量M=1kg的滑块上用轻杆及轻绳悬吊质量m=0.5kg的小球。此装置以速度v0=2m/s向右滑动。另一质量也为M的滑块静止于上述装置的右侧。当两滑块相撞后,便粘在一起向右运动,求
(1)两滑块相撞过程中损失的机械能。
(2)当小球向右摆到最大高度时,两滑块的速度大小。
有一长度为l="1" m的木块A,放在足够长的水平地面上.取一无盖长方形木盒万将A罩住,B的左右内壁间的距离为L="9" m. A,B质量相同均为m="1" kg,与地面间的动摩擦因数分别为开始时A与B的左内壁接触,两者以相同的初速度v0 =" 28" rn/s向右运动.已知A与B的左右内壁发生的碰撞时间极短(可忽略不计),且碰撞后A,B互相交换速度.A与B的其它侧面无接触.重力加速度g="10" m/ s2.求:
(1)开始运动后经过多长时间A,B发生第一次,碰撞;
(2)从开始运动到第二次碰撞碰后摩擦产生的热能;
(3)若仅v0未知,其余条件保持不变,(a)要使A,B最后同时停止,而且A与B轻轻接触,初速度场应满足何条件?(b)要使B先停下,且最后全部停下时A运动至B右壁刚好停止,初速度v0应满足何条件?
质量为0.1 kg 的弹性球从空中某高度由静止开始下落经0.5s落至地面,该下落过程对应的图象如图所示.球与水平地面相碰后离开地面时的速度大小为碰撞前的3/4.设球受到的空气阻力大小恒为f,取="10" m/s2, 求:
(1)弹性球受到的空气阻力f的大小;
(2)弹性球第一次碰撞后反弹的高度h.
如图所示,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧,弹簧左侧挡板的质量不计.设A以速度v0朝B运动,压缩弹簧;当A、 B速度相等时,B与C恰好相碰并粘接在一起,且B与C碰撞时间极短.此后A继续压缩弹簧,直至弹簧被压缩到最短.在上述过程中,求:
(1)B与C相碰后的瞬间,B与C粘接在一起时的速度;
(2)整个系统损失的机械能;
(3)弹簧被压缩到最短时的弹性势能.
如图所示,一个质量为M="2" kg的凹槽静置在光滑的水平地面上,凹槽内有一质量为m="1" kg的小滑块,某时刻小滑块获得水平向右的瞬时速度v0 ="10" m/s,此后发现小滑块与凹槽左右两壁不断碰撞,当小滑块速度大小为1 m/s时,试求此时系统损失的机械能。
如图所示,固定点O上系一长L =" 0.6" m的细绳,细绳的下端系一质量m =" 1.0" kg的小球(可视为质点),原来处于静止状态,球与平台的B点接触但对平台无压力,平台高h =" 0.80" m,一质量M =" 2.0" kg的物块开始静止在平台上的P点,现对M施予一水平向右的初速度V0,物块M沿粗糙平台自左向右运动到平台边缘B处与小球m发生正碰,碰后小球m在绳的约束下做圆周运动,经最高点A时,绳上的拉力恰好等于摆球的重力,而M落在水平地面上的C点,其水平位移S =" 1.2" m,不计空气阻力,g ="10" m/s2 ,求:
(1)求物块M碰撞后的速度。
(2)若平台表面与物块间动摩擦因数μ=0.5,物块M与小球的初始距离为S1=1.3m,物块M在P处的初速度大小为多少?
如图所示,质量M=4kg的滑板B静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C到滑板左端的距离L=0.5m,这段滑板与木块A(可视为质点)之间的动摩擦因数,而弹簧自由端C到弹簧固定端D所对应的滑板上表面光滑.小木块A以速度v0=10m/s由滑板B左端开始沿滑板B表面向右运动.已知木块A的质量m=1kg,g取10m/s2。求:
①弹簧被压缩到最短时木块A的速度;
②木块A压缩弹簧过程中弹簧的最大弹性势能。
如图所示,A、B是静止在光滑水平地面上相同的两块长木板,长度均为L= 0.75m,A的左端和B的右端接触,两板的质量均为M=2.0kg。C是一质量为m=l.0kg的小物块,现给它一初速度v0=2.0m/s,使它从B板的左端开始向右滑动。已知C与A、B之间的动摩擦因数均为=0.20,最终C与A保持相对静止。取重力加速度g=l0,求木板A、B最终的速度分别是多少?