如图,一竖直圆管质量为 ,下端距水平地面的高度为 ,顶端塞有一质量为 的小球。圆管由静止自由下落,与地面发生多次弹性碰撞,且每次碰撞时间均极短;在运动过程中,管始终保持竖直。已知 ,球和管之间的滑动摩擦力大小为 , 为重力加速度的大小,不计空气阻力。
(1)求管第一次与地面碰撞后的瞬间,管和球各自的加速度大小;
(2)管第一次落地弹起后,在上升过程中球没有从管中滑出,求管上升的最大高度;
(3)管第二次落地弹起的上升过程中,球仍没有从管中滑出,求圆管长度应满足的条件。
如图, 一轻弹簧原长为 , 其一端固定在倾角为 的固定直轨道 的底端 处, 另一端位于直轨道上 处, 弹簧处于自然状态, 直轨道与一半径为 的光滑圆弧轨道相切于 点, 均在同一竖直面内。质量为 的小物块 自 点由静止开 始下滑, 最低到达 点(末画出 , 随后 沿轨道被弹回, 最高点到达 点, , 已知
与直轨道间的动摩擦因数 , 重力加速度大小为 (取 )
(1) 求 P 第一次运动到 点时速度的大小。
(2) 求 运动到 点时弹簧的弹性势能。
(3) 改变物块 的质量, 将 推至 点, 从静止开始释放。已知 自圆弧轨道的最高点 处水平飞出后, 恰好通过 点。 点在 点左下方,与 点水平相距 、竖直相距 , 求 运动到 D 点时速度的大小和改变后 P 的质量。
如图所示,一倾角为 的固定斜面的底端安装一弹性挡板, 、 两物块的质量分别为 和 , 静止于斜面上 处。某时刻, 以沿斜面向上的速度 与 发生弹性碰撞。 与斜面间的动摩擦因数等于 ,设最大静摩擦力等于滑动摩擦力。 与斜面间无摩擦,与挡板之间的碰撞无动能损失。两物块均可以看作质点,斜面足够长, 的速度减为零之前 不会与之发生碰撞。重力加速度大小为 。
(1)求 与 第一次碰撞后瞬间各自的速度大小 、 ;
(2)求第 次碰撞使物块 上升的高度 ;
(3)求物块 从 点上升的总高度 ;
(4)为保证在 的速度减为零之前 不会与之发生碰撞,求 点与挡板之间的最小距离 。