从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是
A.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小 |
B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小 |
C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢 |
D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。 |
小华做“蹦极”运动,用原长15 m的橡皮绳拴住身体从高空跃下,若小华质量为50 kg,从50 m高处由静止下落,到运动停止所用时间为4 s,则橡皮绳对人的平均作用力约为_____________.(取g="10" m/s2)
如图所示,在光滑的水平面上,两木块紧挨在一起,质量分别为m1、m2,水平飞来的子弹先后射穿m1、m2,射穿时间分别为t1和t2,木块对子弹的阻力恒定.则子弹穿透两木块后,两木块的速度之比=_____________.
美国“发现号”航天飞机从肯尼迪航天中心发射升空,飞行中一只飞鸟撞上了航天飞机的外挂油箱,幸好当时速度不大,航天飞机有惊无险.假设某航天器的总质量为10 t,以8 km/s的速度高速运行时迎面撞上一只速度为10 m/s、质量为5 kg的大鸟,碰撞时间为1.0×10-5 s,则撞击过程中的平均作用力约为( )
A.4×109 N | B.8×109 N |
C.8×1012 N | D.5×106 N |
下面列举的装置各有其一定的道理,其中不可以用牛顿第二定律的动量表达式进行解释的是( )
A. | 运输玻璃器皿等易碎品时,总是在器皿的四周垫着碎纸或海绵等柔软、有弹性的垫衬物 |
B. | 建筑工人戴的安全帽内有帆布垫,把头和帽子的外壳隔开一定的空间 |
C. | 热水瓶胆做成双层,且把两层中间的空气抽去 |
D. | 跳高运动中的垫子总是十分松软 |
一物体在外力的作用下从静止开始做直线运动,合外力的方向不变,大小随时间的变化如图所示.设该物体在和时刻相对于出发点的位移分别为和,速度分别为和;合外力在和时间内做的功分别为和,在和时刻的功率分别为和,则()
A. | B. | ||
C. | D. |
如图所示,PQ和MN是固定于水平面内的平行光滑金属轨道,轨道足够长,其电阻可忽略不计。金属棒ab、cd放在轨道上,始终与轨道垂直,且接触良好。金属棒ab、cd的质量均为m,长度均为L。两金属棒的长度恰好等于轨道的间距,它们与轨道形成闭合回路。金属棒ab的电阻为2R,金属棒cd的电阻为R。整个装置处在竖直向上、磁感应强度为B的匀强磁场中。
(1)若保持金属棒ab不动,使金属棒cd在与其垂直的水平恒力F作用下,沿轨道以速度v做匀速运动。试推导论证:在Δt时间内,F对金属棒cd所做的功W等于电路获得的电能E电;
(2)若先保持金属棒ab不动,使金属棒cd在与其垂直的水平力F′(大小未知)作用下,由静止开始向右以加速度a做匀加速直线运动,水平力F′作用t0时间撤去此力,同时释放金属棒ab。求两金属棒在撤去F′后的运动过程中,
①金属棒ab中产生的热量;
②它们之间的距离改变量的最大值Dx。
如图甲所示,一物块在时刻,以初速度从足够长的粗糙斜面底端向上滑行,物块速度随时间变化的图象如图乙所示,时刻物块到达最高点,时刻物块又返回底端,由此可以确定( )
A.物块返回底端时的速度 |
B.物块所受摩擦力大小 |
C.斜面倾角 |
D.时间内物块克服摩擦力所做的功 |
(10分). “┙”型滑板,(平面部分足够长),质量为4m,距滑板的A壁为L1距离的B处放有一质量为m,电量为+q的大小不计的小物体,小物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中,初始时刻,滑板与小物体都静止,试求:
(1)释放小物体,第一次与滑板A壁碰前小物体的速度v1多大?
(2)若小物体与A壁碰后相对水平面的速度大小为碰前的,碰撞时间极短,则碰撞后滑板速度多大?(均指对地速度)
(3)若滑板足够长,小物体从开始运动到第二次碰撞前,电场力做功为多大?
两根足够长的平行光滑导轨,相距1m水平放置。匀强磁场竖直向上穿过整个导轨所在的空间B =" 0.4" T。金属棒ab、cd质量分别为0.1kg和0.2kg,电阻分别为0.4Ω和0.2Ω,并排垂直横跨在导轨上。若两棒以相同的初速度3m/s向相反方向分开,不计导轨电阻,求:
①棒运动达到稳定后的ab棒的速度大小;
②金属棒运动达到稳定的过程中,回路上释放出的焦耳热;
③金属棒运动达到稳定后,两棒间距离增加多少?
如图所示,是两条水平放置彼此平行的金属导轨,匀强磁场的磁感线垂直导轨平面.导轨左端接阻值的电阻,电阻两端并联一电压表,垂直导轨跨接一金属杆的质量,电阻.与导轨间动摩擦因数μ,导轨电阻不计.现用的恒力水平向右拉,使之从静止开始运动,经时间后,开始做匀速运动,此时电压表表示数.重力加速度.求:
(1)匀速运动时,外力的功率;
(2)杆加速过程中,通过的电量;
(3)杆加速运动的距离.
如图所示,固定在竖直平面内半径为R的四分之一光滑圆弧轨道与水平光滑轨道平滑连接,A、B、C三个滑块质量均为m,B、C带有同种电荷且相距足够远,静止在水平轨道上的图示位置。不带电的滑块A从圆弧上的P点由静止滑下(P点处半径与水平面成300角),与B发生正碰并粘合,然后沿B、C两滑块所在直线向C滑块运动。
求:①A、B粘合后的速度大小;
②A、B粘合后至与C相距最近时系统电势能的变化。
如图所示,质量为m=1kg的滑块,以υ0=5m/s的水平初速度滑上静止在光滑水平面的平板小车,若小车质量M=4kg,平板小车足够长,滑块在平板小车上滑移1s后相对小车静止。求:(g取10m/s2)
(1)滑块与平板小车之间的滑动摩擦系数μ; (2)此时小车在地面上滑行的位移?
如图所示,直角坐标系xoy位于竖直平面内,y轴正方向竖直向上,x轴正方向水平向右。空间中存在相互垂直的匀强电场和匀强磁场,匀强磁场垂直xoy平面向里,磁感应强度大小为B。匀强电场(图中未画出)方向平行于xoy平面,小球(可视为质点)的质量为m、带电量为+q,已知电场强度大小为,g为重力加速度。
(1)若匀强电场方向水平向左,使小球在空间中做直线运动,求小球在空间中做直线运动的速度大小和方向;
(2)若匀强电场在xoy平面内的任意方向,确定小球在xoy平面内做直线运动的速度大小的范围;
(3)若匀强电场方向竖直向下,将小球从O点由静止释放,求小球运动过程中距x轴的最大距离。
如图光滑水平面上有竖直向下的有界匀强磁场,磁场宽度为2L、磁感应强度为B。正方形线框abcd的电阻为R,边长为L,线框以与ab垂直的速度3v进入磁场,线框穿出磁场时的速度为v,整个过程中ab、cd两边始终保持与磁场边界平行。设线框进入磁场区域过程中产生的焦耳热为Q1,穿出磁场区域过程中产生的焦耳热为Q2。则Q1:Q2等于
A.1:1 B.2:1 C.3:2 D.5:3