已知万有引力常量为G,地球半径为R,同步卫星距地面的高度为h,地球的自转周期为T,地球表面的重力加速度为g。某同学根据以上条件,提出一种估算地球赤道表面的物体随地球自转的线速度大小的方法:
地球赤道表面的物体随地球作圆周运动,由牛顿运动定律有
又因为地球上的物体的重力约等于万有引力,有
由以上两式得
(1)请判断上面的结果是否正确?
(2)由题目给出的条件还可以估算出哪些物理量?
地球质量为M,半径为R,万有引力恒量为G。若已知第一宇宙速度=7.9k/s,地球半径R=6.4×103km,万有引力恒量G=6.67×10N·m2·kg。
求:(1)第一宇宙速度的计算式;
(2)地球的质量(要求保留两位有效数字)。
两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。现测得两星中心距离为R,其运动周期为T,求两星的总质量。
中子星是恒星演化过程的一种可能结果,它的密度很大。现有一中子星,观测到它的自转周期为T=s。问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。计算时星体可视为均匀球体。(引力常数G=6.6710m/kg·s)
宇航员在一星球表面上的某高处,沿水平方向抛出一小球。经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L。若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为L。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G。求该星球的质量M。
设地球表面的重力加速度为g,物体在距地心4R(R是地球半径)处,由于地球的引力作用而产生的重力加速度g,,则g/g,为()
A.1; | B.1/9; | C.1/4; | D.1/16。 |
如图所示,在距一质量为M、半径为R、密度均匀的球体中心2R处,有一质量为m的质点,M对m的万有引力的大小为F。现从M中挖出一半径为r的球体,如图,OO′=R/2。求M中剩下的部分对m的万有引力的大小。
在天文学中,把两颗相距较近的恒星叫双星,已知两恒星的质量分别为m和M,两星之间的距离为L,两恒星分别围绕共同的圆心作匀速圆周运动,如图所示,求恒星运动的半径和周期。