如图所示,一根细线下端拴一个金属小球P,细线的上端固定在金属块Q上,Q放在带小孔(小孔是光滑)的水平桌面上,小球在某一水平面内作匀速圆周运动(圆锥摆).现使小球改到一个更高一些的水平面上作匀速圆周运动(图中P′位置),两次金属块Q都静止在桌面上的同一点,则后一种情况与原来相比较,下面的判断中正确的是
A.Q受到桌面的支持力变大 |
B.Q受到桌面的静摩擦力变大 |
C.小球P运动的周期变大 |
D.小球P运动的角速度变大 |
如图所示是自行车传动结构的示意图,其中Ⅰ是大齿轮,齿数为,Ⅱ是小齿轮,齿数为,Ⅲ 是后车轮,半径为R,设脚踏板的转速为n r/s,则以下说法中正确的是
A.自行车前进的速度为 |
B.自行车前进的速度为 |
C.大齿轮、小齿轮、后车轮的角速度之比为 |
D.大齿轮、小齿轮、后车轮的线速度之比为 |
下列说法中正确的是( )
A.匀速圆周运动是一种匀速运动 |
B.匀速圆周运动是一种匀变速曲线运动 |
C.匀速圆周运动是一种平衡状态 |
D.平抛运动是一种匀变速曲线运动 |
匀速圆周运动不变的物理量是( )
A.线速度 B 向心加速度 C 向心力 D角速度
图示为一个玩具陀螺。a、b和c是陀螺上的三个点。当陀螺绕垂直于地面的轴线以角速度稳定旋转时,下列表述正确的是( )
A.a、b的角速度比c的大 | B.c的线速度比a、b的大 |
C.a、b和c三点的线速度大小相等 | D.a、b和c三点的角速度相等 |
如图所示,细线下面悬挂一个小钢球(可看作质点),让小钢球在水平面内做匀速圆周运动。若测得小钢球作圆周运动的圆半径为r,悬点O到圆心O’之间的距离为h,小球质量为m。忽略空气阻力,重力加速度为g。小球做匀速圆周运动的周期T= 。
如图所示,甲、乙两快艇在湖面上做匀速圆周运动。关于两快艇的运动,下列说法正确的是( )
A.若两快艇运动的周期相等,半径较小的向心加速度较大 |
B.若两快艇运动的线速度大小相等,半径较小的向心加速度较大 |
C.若两快艇运动的角速度相等,半径较小的向心加速度较大 |
D.若两快艇运动的线速度大小相等,半径较大的向心加速度较大 |
如图所示,BC是半径为R的竖直面内的圆弧轨道,轨道末端C在网心O的正下方,∠BOC= 60°,将质量为m的小球,从与O等高的A点水平抛出,小球恰好从B点沿圆弧切线方向进入网轨道,由于小球与圆弧之间有摩擦,能够使小球从B到C做匀速圆周运动。重力加速度大小为g.则
A.从B到C,小球克服摩擦力做功为
B.从B到C,小球与轨道之间的动摩擦因数可能保持不变
C. A、B两点间的距离为
D.在C点,小球对轨道的压力为
如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l。木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g。若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是: ( )
A.b一定比a先开始滑动 |
B.a、b所受的摩擦力始终相等 |
C.ω=是b开始滑动的临界角速度 |
D.当ω=时,a所受摩擦力的大小为kmg |
如图所示,两平行金属板间距为d,电势差为U,板间电场可视为匀强电场;金属板下方有一磁感应强度为B的匀强磁场。带电量为+q、质量为m的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动。忽略重力的影响,求:
(1)匀强电场的电场强度E的大小。
(2)粒子从电场射出时速度v的大小。
(3)粒子在磁场中做匀速圆周运动的半径R。
某原子电离后其核外只有一个电子,若该电子在核的静电力作用下绕核做匀速圆周运动,那么电子运动( )
A.半径越大,加速度越大 | B.半径越小,周期越大 |
C.半径越大,角速度越小 | D.半径越小,线速度越小 |
在绕地球作匀速圆周运动的太空仓内,按照同学们使用的新人教版教材要求,能完成的实验是:
A.验证力的平行四边形法则 |
B.探究弹簧形变量与弹力的关系 |
C.探究物体加速度与质量和合外力的关系 |
D.用平抛运动测初速度 |
如图所示为某一皮带传动装置.主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑.下列说法正确的是 ( ).
A.从动轮做顺时针转动 |
B.从动轮做逆时针转动 |
C.从动轮的转速为n |
D.从动轮的转速为n |
两物体做匀速圆周运动,其运动半径之比为2:3,受到向心力之比为3:2,则其动能比为( )
A.9:4 | B.4:9 | C.1:1 | D.2:3 |