如图所示,质量为M=1kg,长为L=1m的木板A上放置质量为m=0.5kg的物体B,平放在光滑桌面上,B位于木板中点处,物体B与A之间的动摩擦因数为μ=0.1,B与A间的最大静摩擦力等于滑动摩擦力(B可看作质点,重力加速度g取10m/s2)。求:
(1)至少要用多大力拉木板,才能使木板从B下方抽出?
(2)当拉力为3.5N时,经过多长时间A板从B板下抽出?
(3)当拉力为3.5N时,此力至少要作用多长时间B才能从木板A上滑落?(最后结果可用根式表示)
如图所示,放在粗糙水平面上的物块A、B用轻质弹簧称拉相连,两物块与水平面间的动摩擦因数均为μ。今对物块A施加一水平向左的恒力F,使A、B一起向左匀加速运动,设A、B的质量分别为m、M,则弹簧秤的示数为( )
A. | B. |
C. | D. |
一圆环A套在一均匀圆木棒B上,A的高度相对B的长度来说可以忽略不计。A和B的质量都等于m,A和B之间的滑动摩擦力为f(f < mg)。开始时B竖直放置,下端离地面高度为h,A在B的顶端,如图所示。让它们由静止开始自由下落,当木棒与地面相碰后,木棒以竖直向上的速度反向运动,并且碰撞前后的速度大小相等。设碰撞时间很短,不考虑空气阻力,问:在B再次着地前,要使A不脱离B, B至少应该多长?
如图所示,木块A、B静止叠放在光滑水平面上,A的质量为m,B的质量为2m。现施加水平力F拉B,A、B刚好不发生相对滑动,一起沿水平面运动。若改为水平力F′拉A,使A、B也保持相对静止,一起沿水平面运动,则F′不得超过 。
利用传感器和计算机可以测量快速变化的力的瞬时值,如图所示是用这种方法获得的弹性细绳中拉力 F 随时间t变化的图线.实验时,把小球举到悬点O处,然后放手让小球自由落下,由图线所提供的信息可以判断 ( )
A.绳子的自然长度为gt12 |
B.t2时刻小球的速度最大 |
C.t1时刻小球处在最低点 |
D.t1时刻到t2时刻小球的速度先增大后减小 |
木块A、B分别重50 N和70 N,它们与水平地面之间的动摩擦因数均为0.2,与A、B相连接的轻弹簧被压缩了5 cm,系统置于水平地面上静止不动。已知弹簧的劲度系数为100 N/m。用F=7N的水平力作用在木块A上,如图所示,力F作用后( )
A.木块A所受摩擦力大小是10N |
B.木块A所受摩擦力大小是2N |
C.弹簧的弹力是12N |
D.木块B所受摩擦力大小为12N |
如图所示,一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱和杆的质量为M,环的质量为m,已知环以某一初速度沿着杆匀减速下滑,设环的加速度大小为a,则在环下滑过程中箱对地面的压力F为:
A.F=(M+m)g | B.F=Mg+m(g+a) |
C.Mg<F<(m+M)g | D.F=Mg+m(g-a) |
如图所示,质量M的斜面体置于水平面上,其上有质量为m的小物块,各接触面均无摩擦。第一次将水平力F1加在m上;第二次将水平力F2加在M上,两次都要求m与M不发生相对滑动。求:F1∶F2=?
如图所示,质量为m的小球A用细绳悬挂于车顶板的O点,当小车在外力作用下沿倾角为30°的斜面向上做匀加速直线运动时,球A的悬线恰好与竖直方向成30°夹角。求:
(1)小车沿斜面向上运动的加速度多大?
(2)悬线对球A的拉力是多大?
如图所示,质量为M的小车放在光滑的水平面上.小车上用细线悬吊一质量为m的小球,M>m.现用一力F水平向右拉小球,使小球和车一起以加速度a向右运动时,细线与竖直方向成α角,细线的拉力为T;若用一力F/水平向左拉小车,使小球和车一起以加速度a/向左运动时,细线与竖直方向也成α角,细线的拉力为T/.则( )
A.a/=a,T/=T | B.a/>a,T/=T | C.a/<a,T/=T | D.a/>a,T/>T |
如图所示,质量分别为m1、m2的两个物块放在光滑的水平面上,中间用细绳相连,在F拉力的作用下一起向右做匀加速运动,求中间细绳的拉力为多大?
如图所示,物体A的质量为1kg,物体B的质量为2kg,物体A与物体B之间的动摩擦因数为0.2,物体B与水平桌面之间的动摩擦因数为0.3.若不计细绳及滑轮的质量,也不计细绳与滑轮之间的摩擦,要使物体B被水平细绳从物体A下部抽出来,物体C质量应为多大?(g取10m/)
质量相等的物体A和B用轻绳连接置于斜面上,如图所示,绳的质量和绳与滑轮间的摩擦不计,A距地面4m,B在斜面底端,A由静止开始经2s到达地面,求B在斜面上能上升的最大距离.(斜面足够长)(g=10m/)