磁谱仪是测量能谱的重要仪器。磁谱仪的工作原理如图所示,放射源发出质量为、电量为的粒子沿垂直磁场方向进入磁感应强度为的匀强磁场,被限束光栏限制在2的小角度内,粒子经磁场偏转后打到与束光栏平行的感光片上。(重力影响不计)
(1)若能量在(,且)范围内的粒子均垂直于限束光栏的方向进入磁场。试求这些粒子打在胶片上的范围.
(2)实际上,限束光栏有一定的宽度,粒子将在2角内进入磁场。试求能量均为的粒子打到感光胶片上的范围
如图所示,带电量分别为和的小球、固定在水平放置的光滑绝缘细杆上,相距为。若杆上套一带电小环,带电体、和均可视为点电荷。
(1)求小环的平衡位置。
(2)若小环带电量为,将小环拉离平衡位置一小位移后静止释放,试判断小环能否回到平衡位置。(回答"能"或"不能"即可)
(2)若小环带电量为,将小环拉离平衡位置一小位移后静止释放,试证明小环将作简谐运动。(提示:当时,则 )
如题图,质量为的滑块放在气垫导轨上,为位移传感器,它能将滑块到传感器的距离数据实时传送到计算机上,经计算机处理后在屏幕上显示滑块的位移-时间图象和速率-时间图象。整个装置置于高度可调节的斜面上,斜面的长度为了、高度为。(取重力加速度,结果可保留一位有效数字)
(1)现给滑块一沿气垫导轨向上的初速度,的图线如题图所示。从图线可得滑块下滑时的加速度= ,摩擦力对滑块运动的影响。(填"明显,不可忽略"或"不明显,可忽略")
(2)此装置还可用来验证牛顿第二定律。实验时通过改变,可验证质量一定时,加速度与力成正比的关系;实验时通过改变,可验证力一定时,加速度与质量成反比的关系。
(3)将气垫导轨换成滑板,滑块换成滑块,给滑块一沿滑板向上的初速度,的s-t图线如题图。图线不对称是由于造成的,通过图线可求得滑板的倾角=(用反三角函数表示),滑块与滑板间的动摩擦因数=
要描绘某电学元件(最大电流不超过,最大电压不超过)的伏安特性曲线,设计电路如图,图中定值电阻为,用于限流;电流表量程为,内阻约为;电压表(未画出)量程为,内阻约为;电源电动势为,内阻不计。
(1)实验时有两个滑动变阻器可供选择:
a、阻值0到,额定电流
b、阻值0到,额定电流
本实验应选的滑动变阻器是(填""或"")
(2)正确接线后,测得数据如下表
1 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
U(V) |
0.00 |
3.00 |
6.00 |
6.16 |
6.28 |
6.32 |
6.36 |
6.38 |
6.39 |
6.40 |
I(mA) |
0.00 |
0.00 |
0.00 |
0.06 |
0.50 |
1.00 |
2.00 |
3.00 |
4.00 |
5.50 |
a)根据以上数据,电压表是并联在与之间的(填""或"")
b)根据以上数据,画出该元件的伏安特性曲线。
(3)画出待测元件两端电压随间电压变化的示意图为(无需数值)
假设太阳系中天体的密度不变,天体直径和天体之间距离都缩小到原来的一半,地球绕太阳公转近似为匀速圆周运动,则下列物理量变化正确的是()
A. | 地球的向心力变为缩小前的一半 |
B. | 地球的向心力变为缩小前的 |
C. | 地球绕太阳公转周期与缩小前的相同 |
D. | 地球绕太阳公转周期变为缩小前的一半 |
某同学欲采用如图所示的电路完成丰相关实验。图中电流表的量程为0.6A,内阻约0.1;电压表的量程为3V,内阻约6k;为小量程电流表;电源电动势约为3V,内阻较小。下列电路中正确的是()
A. | |
B. | |
C. | |
D. |
2006年度诺贝尔物理学奖授予了两名美国物理学家,以表彰他们发现了宇宙微波背景辐射的黑体谱形状及其温度在不同方向上的微小变化。他们的出色工作被誉为是宇宙学研究进入精密科学时代的起点。下列与宇宙微波背景辐射黑体谱相关的说法中正确的是()
A. | 微波是指波长在 到 之间的电磁波 |
B. | 微波和声波一样都只能在介质中传播 |
C. | 黑体的热辐射实际上是电磁辐射 |
D. | 普朗克在研究黑体的热辐射问题中提出了能量子假说 |
现代物理学认为,光和实物粒子都具有波粒二象性。下列事实中突出体现波动性的是()
A. | 一定频率的光照射到锌板上,光的强度越大,单位时间内锌板上发射的光电子就越多 |
B. | 肥皂液是无色的,吹出的肥皂泡却是彩色的 |
C. | 质量为 、速度为 的小球,其德布罗意波长约为 ,不过我们能清晰地观测到小球运动的轨迹 |
D. | 人们常利用热中子研究晶体的结构,因为热中子的德布罗意波长一晶体中原子间距大致相同 |
如图所示,实线和虚线分别为某种波在时刻和时刻的波形曲线。是横坐标分别为的两个质点,下列说法中正确的是()
A. | 任一时刻,如果质点 向上运动,则质点 一定向下运动 |
B. | 任一时刻,如果质点 速度为零,则质点 的速度也为零 |
C. | 如果波是向右传播的,则波的周期可能为 |
D. | 如果波是向左传播的,则波的周期可能为 |
子与氢原子核(质子)构成的原子称为氢原子,它在原子核物理的研究中有重要作用。图为氢原子的能级示意图。假定光子能量为的一束光照射容器中大量处于能级的氢原子,氢原子吸收光子后,发出频率为、、、、、的光,且频率依次增大,则等于()
A. | B. | ||
C. | D. |
2006年美国和俄罗斯的科学家利用回旋加速器,通过(钙48)轰击(锎249)发生核反应,成功合成了第118号元素,这是迄今为止门捷列夫元素周期表中原子充数最大的元素。实验表面,该元素的原子核先放出3个相同的粒子,再连续经过3次衰变后,变成质量数为282的第112号元素的原子核,则上述过程中的粒子是()
A. | 中子 | B. | 质子 | C. | 电子 | D. | 粒子 |
分子动理论较好地解释了物质的宏观热力学性质。据此可判断下列说法中错误的是()
A. | 显微镜下观察到墨水中的小炭粒在不停的作无规则运动,这反映了液体分子运动的无规则性 |
B. | 分子间的相互作用力随着分子间距离的增大,一定先减小后增大 |
C. | 分子势能随着分子间距离的增大,可能先减小后增大 |
D. | 在真空、高温条件下,可以利用分子扩散向半导体材料掺入其它元素 |
a、b、c、d是匀强电场中的四个点,它们正好是一个矩形的四个顶点。电场线与矩形所在的平面平行。已知a点的电势是20V,b点的电势是24V,d点的电势是4V,如右图所示。 由此可知,c点的电势为( )
A.4V | B.8V | C.12V | D.24V |
单位时间内流过管道横截面的液体体积叫做液体的体积流量(以下简称流量)。由一种利用电磁原理测量非磁性导电液体(如自来水、啤酒等)流量的装置,称为电磁流量计。它主要由将流量转换为电压信号的传感器和显示仪表两部分组成。传感器的结构如图所示,圆筒形测量管内壁绝缘,其上装有一对电极和c,a、c间的距离等于测量管内径D,测量管的轴线与a、c的连接方向以及通电线圈产生的磁场方向三者间两两相互垂直。当导电液体流过测量管时,在电极a、c的间出现感应电动势E,并通过与电极连接的仪表显示出液体流量Q。设磁场均匀恒定,磁感应强度为B。
(1)已知,设液体在测量管内各处流速相同,试求E的大小(取3.0);
(2)一新建供水站安装了电磁流量计,在向外供水时流量本应显示为正值。但实际显示却为负值。经检查,原因是误将测量管接反了,既液体由测量管出水口流入,从如水口流出。因为已加压充满管道。不便再将测量管拆下重装,请你提出使显示仪表的流量指示变为正值的简便方法;
(3)显示仪表相当于传感器的负载电阻,其阻值记为R,a、c间导电液体的电阻r随液体电阻率的变化而变化,从而会影响显示仪表的示数。试以E、R、r为参量,给出电极a、c间输出电压U的表达式,并说明怎样可以降低液体电阻率变化对显示仪表示数的影响。